

aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

Catalog 301 Condensed Catalog of Sporlan Products

March 2011

ENGINEERING YOUR SUCCESS.

CONDENSED CATALOG 301

This catalog is a condensed version of the complete Sporlan Catalog. By including a minimum of engineering information we are able to provide a concise reference to pertinent data and specifications on Sporlan products. For additional engineering information, a complete Sporlan Catalog or CD, please consult your nearest Sporlan Wholesaler or email europecold@parker.com.

CONTENTS

	Page	*For complete p see Bulletin nu
Acid Test Kits	40	40-10
Accumulators	38	40-10-7
Catch-All® Filter-Driers Liquid & Suction Line	31	40-10
Crankcase Pressure Regulating Valves	45	90-10
Defrost Differential Pressure Regulating Valves	50	Contact yo Sales Engir
Discharge Bypass Valves	44	90-40
Electronic Temperature Control Systems	54	100-9, 100-2 100-20-2, 10 100-60
Evaporator Pressure Regulating Valves	51	90-20, 90-20
Head Pressure Control Valves	47	90-30
"OF" Series Oil Filters	62	110-10
Oil Level Control System	60	110-10
Receivers	40	20-10
Refrigerant Distributors	24	20-10
Reversible Heat Pump Filter-Driers	37	40-10
See • All® Moisture & Liquid Indicators	41	70-10
Solenoid Valves	25	30-10
Suction Filters	42	80-10
Thermostatic Expansion Valves	3	10-9, 10-10
Three Way Heat Reclaim Valves	28	30-20
Terms of Sale With Warranty Limitations	63	

40-10 40-10-7 40-10 90-10 Contact your Sporlan Sales Engineer 90-40 100-9, 100-20, 100-20-1, 100-20-2, 100-40, 100-50-1 100-60 90-20, 90-20-1 & 90-20-2 90-30 110-10 10-10 20-10 20-10 20-10 40-10 70-10 30-10 80-10 10-9, 10-10 30-20

△WARNING – USER RESPONSIBILITY

Failure or improper selection or improper use of the products described herein or related items can cause death, personal injury and property damage.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.

The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.

To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

OFFER OF SALE

The items described in this document are hereby offered for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. This offer and its acceptance are governed by the provisions stated in the detailed "Offer of Sale" available at www.parker.com.

*To request individual Sporlan Product Bulletins, consult your nearest Sporlan Wholesaler or email europecold@parker.com.

FOR USE ON REFRIGERATION and/or AIR CONDITIONING SYSTEMS ONLY

Catalog 301, March 2011 supersedes Catalog 301 dated July 2008 and all prior publications.

product information

umber

10 Outstanding Features & Benefits of Sporlan Thermostatic Expansion Valves

- Selective Thermostatic Charges Designed to provide optimum performance for all applications-air conditioning and heat pump, medium and low temperature refrigeration.
- Thermostatic Element Design Long lasting and field proven stainless steel diaphragm and welded element construction.
- **Diaphragm Design** Large flat diaphragm permits precise valve control.
- **Replaceable Thermostatic Elements** Field replaceable elements on all standard valves.
- Balanced Port Design Provides perfect pin and port alignment, and prevents changes in pressure drop across the valve from influencing valve operation. Provides

excellent control on applications with widely varying operating conditions.

- Pin Carrier Design (Conventional Valves) Provides pre-cise pin and port alignment, and tighter seating.
- Accessible Internal Parts Durable, leakproof body joint construction allows the valve to be disassembled, and the internal parts cleaned and inspected.
- Materials of Construction Pin and port materials offer maximum protection against corrosion and erosion.
- **Silver Soldered Connections** For leakproof, high strength connection-to-body joints.
- Adjustable Superheat Design All standard valves are externally adjustable.

Valve Nomenclature/Ordering Instructions

Combine the letters and numbers in the following manner to obtain the complete valve designation. Also include all connection sizes and the capillary tube length.

EXAMPLE

0	Z	E -	35	_	GA	7/8" ODF SOLDER	х	1-1/8" ODF SOLDER	X	1/4" ODF Solder	x	5′
Body Type	$\label{eq:sportance} \begin{array}{l} \textbf{Sporlan Code} - \text{Refrigerant}\\ \text{Element Label Color Code} \end{array} \\ \textbf{V} = \text{R-22} & \text{Green}\\ \textbf{J} = \text{R-134a} & \text{Blue}\\ \textbf{S} = \text{R-404A} & \text{Orange}\\ \textbf{N} = \text{R-407C} & \text{Lt. Brown}\\ \textbf{F} = \text{R-409A} & \text{Yellow}\\ \textbf{Z} = \text{R-410A} & \text{Rose}\\ \textbf{P} = \text{R-507} & \text{Teal} \end{array}$	"E" specifies external equalizer. Omission of letter "E" indicates valve with internal equalizer.	Nominal Capacity in Tons		Thermostatic Charge	Inlet Connection Size and Style		Outlet Connection Size and Style		External Equalizer Connection Size and Style		Capillary Tubing Length Inches or Feet

Sporlan Selective Charges engineered for peak performance for each specific application **Recommended Thermostatic Charges***

				REFRIGERAN	Г			ACTUAL
APPLICATION	22	134a	404A	407C	409A	410A	507	THERMOSTATIC CHARGES
	_	JCP60	—	—	FCP60	—	—	FCP60
	VCP100			NCP100		_	_	VCP100
Air Conditioning	VGA			NGA		—		VGA
Air Conditioning		—	SCP115			—	—	SCP115
	—	—	—	—	—	ZCP200	—	ZCP200
				—		ZGA	—	ZGA
	—	JC	—	—	FC	—	—	FC
Commercial Refrigeration	VC	—		NC		—	—	VC
10°C to -25°C	—		SC	—	—	—	—	SC
	—	—	—	—	—	—	PC	PC
	—	—		—	FZ	—	—	FZ
		—	—	—	FZP	—	—	FZP
Low Temperature Refrigeration	VZ	—		—		—	—	VZ
-20°C to -40°C	VZP40		—	—	—	—	—	VZP40
		—	SZ	—		—	ΡZ	SZ
	_	_	SZP	_		—	PZP	SZP
Extreme Low Temperature Refrigeration	VX	_	_	_	_	_	_	VX
-40°C to -75°C	_	—	SX	_	_	_	РХ	SX

* APPLICATION FACTORS:

1. The Type ZP charges have essentially the same characteristics as the Type Z charge with one exception: they produce a pressure limit Maximum Operating Pressure (MOP). ZP charges are not intended as replacements for Z charges. Each should be selected for its own unique purpose.

All air conditioning and heat pump charges are intended for use with externally equalized valves.

Type L liquid charges are also available for most commonly used refrigerants in most element sizes. If in doubt as to which charge to use, contact your nearest Sporlan Sales Office with complete system data. 3

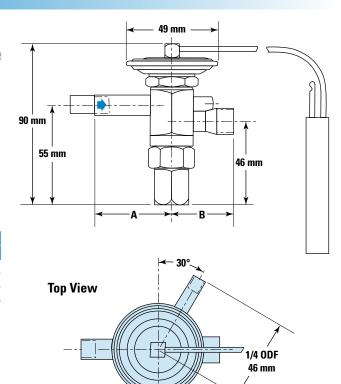
5. The Type X charges are not to be used with "EBS" and "O" valves.

Quick Reference Guide

		NOMIN	AL CAPA	CITY RAN	GE (kW)	CONNECTION	
VALVE TYPE	SPECS	R-22	R-134a	R-404A & R-507	R-410A	TYPES	VALVE DESCRIPTION AND APPLICATION
FB	Page 6	0.88 thru 14	0.44 thru 10.5	0.44 thru 12.3	_	ODF Solder	Small brass body valve available only with straight through connections and external adjustment. The thermostatic element is not replaceable on valves manufactured prior to 1994. Current models use a re- placeable No. 43 element. Typical applications: small capacity air conditioning and refrigeration applica- tions where an external adjustment is desired. Not available for R-410A.
R	Page 7	3.5 thru 42	1.8 thru 31.5	1.8 thru 31.5	4.2 thru 50.8	ODF Solder	Small brass body valve available with either angle style or straight through connection pattern. R valves are only available externally adjustable. The R has a balanced port construction, which makes it ideal for applications with a wide range of operating condi- tions. The design also provides exceptional control of refrigerant in both directions, making the R valve an excellent choice for heat pumps.
RC	Page 8	3.5 thru 21		_	4.2 thru 25.2	ODF Solder	In addition to the features described above for the R valve, the RC has a built-in check valve to allow bypass flow in the reverse direction. This feature makes this valve type ideally suited for heat pump applications. RC valves are only available externally adjustable.
0/B0	Page 9-11	1.2 thru 17.5	0.58 thru 8.8	0.58 thru 10.5	1.5* thru 21.8	SAE Flare	The brass body Q valve is externally adjustable with a removable cartridge or orifice. The valve body, car- tridge and thermostatic element can be supplied as independent components. This allows body, cartridge and element to be assembled and matched to specific system requirements. Inlet connection has a 100 mesh removable strainer screen. Typical applications: Re- frigeration applications and external equalized ver- sions may be used on air conditioning. Type BQ same as above, with balanced port construction. *BQ only
EQ/EBQ	Page 9-11	1.2 thru 17.5	0.58 thru 8.8	0.58 thru 10.5	1.5* thru 21.8	Extended ODF Solder	Type EQ same as the Type Q except it features extended ODF connections. A 100 mesh insert strainer is provided with the valve. Type EBQ same as EQ with balanced port construction. *EBQ only
SQ/SBQ	Page 9-11	1.2 thru 17.5	0.58 thru 8.8	0.58 thru 10.5	1.5* thru 21.8	Extended ODF Solder	Type SQ same as the Type Q valve except it features ODF solder connections and a forged brass inlet fitting with a removable 100 mesh strainer screen which can be cleaned and/or replaced without removing the valve from the line. Type SBQ same as SQ with balanced port construction. *SBQ only

Quick Reference Guide

	00500	NOMINAL CAPACITY RANGE (kW)			GE (kW)	CONNECTION	
VALVE TYPE	SPECS	R-22	R-134a	R-404A & R-507	R-410A	TYPES	VALVE DESCRIPTION AND APPLICATION
S	Page 12	7 thru 52.5	7 thru 35	7 thru 35	_	ODF Solder	Brass bar body, externally adjustable valve. Inlet has a permanent 12 mesh strainer. General purpose valve for air conditioning and refrigeration applications.
EBS	Page 13	28 thru 70	17.5 thru 42	21 thru 46		Extended ODF Solder	Same physical size as the Type S valve except it fea- tures extended ODF connections and a balanced port construction.
	Page 14	70 thru 315	42 thru 210	42 thru 193	70 thru 210	ODF Solder	Brass bar body, externally adjustable valve. Inlet has a permanent 12 mesh strainer. This valve features a bal- anced port construction, and it is suitable for both air conditioning and refrigeration applications. The valve can also be ordered as a bi-directional valve, allowing control of flow in both direction for use on heat pump applications.
H	Page 16	8.8 thru 70	5.3 thru 42	5.3 thru 42		ODF Solder or FPT Flange	Brass bar body, externally adjustable valve with flange connections. Inlet flange bushing has a permanent 16 mesh strainer. The FPT flange connection requires the K-1178 adapter kit. This valve provides the smallest capacity TEVs with flange connections and it is suit- able for both air conditioning and refrigeration appli- cations.
M	Page 17	73.5 thru 147	52.5 thru 87.5	52.5 thru 105	_	ODF Solder or FPT Flange	Cast bronze body, externally adjustable valve with flange connections. Inlet has a 12 mesh strainer. This valve type provides valve capacities greater than the Type H and it is suitable for air conditioning and refrig- eration applications. Flanges for the Type M valve are interchangeable with the Type V valve.
v Je	Page 18	182 thru 350	123 thru 193	133 thru 245		ODF Solder or FPT Flange	Cast bronze body, externally adjustable valve with flange connections. Inlet has a 12 mesh strainer. This valve type features a dual port semi-balanced design. This valve type provides valve capacities greater than the Type M and is suitable for air conditioning and refrigeration applications. Flanges for the Type V are interchangeable with the Type M.
w 👘	Page 19	473 thru 630	280 thru 385			ODF Solder Flange	Cast bronze body, externally adjustable valve with flange connections. Inlet has a 12 mesh strainer. This valve type features a dual port semi-balanced design and it is primarily for large capacity chillers. This valve type provides the largest valve capacities available for flange connection TEVs.


Page 6 - CATALOG 301

THERMOSTATIC EXPANSION VALVES

22, 134a, 404A, 407C, 409A 507

Type FB – Knife Edge Joint Standard Cap Tube Length 30 inches (760 mm)

The Type FB valve is an externally adjustable valve designed primarily for use in small capacity refrigeration applications. This valve may also be applied on residential and small commercial air conditioning, and heat pump units. Not available for R-410A.

Dimensions – Connections

VALVE	FITTING SIZE	mm		
ТҮРЕ	Inches	Α	В	
	1/4 ODF	43	—	
FB	3/8 ODF	43	34	
	1/2 ODF		34	

Bulb Sizes

THERMOSTATIC	mm							
CHARGE	R-22	R-134a	R-404A	R-507				
C								
Z & ZP	13 OD x 76	13 00) x 76					

Specifications - Element Size No. 43, Knife Edge Joint

REFRIGERANT (Sporlan Code)	INTERNAL EQUALIZER	EXTERNAL EQUALIZER	NOMINAL CAPACITY kW of Refrigeration	THERMOSTATIC CHARGES AVAILABLE	STANDARD TUBING LENGTH mm	Blue figures are st	ON – Inches andard and will be therwise specified. OUTLET	NET WEIGHT – kG	SHIPPING WEIGHT – kG
	FBJ-1/8	FBJE-1/8	0.44						
	FBJ-1/4	FBJE-1/4	0.88			1/4, 3/8	3/8, 1/2		
	FBJ-1/2	FBJE-1/2	1.75	C _					
134a (J)	FBJ-1	FBJE-1	3.5		0				
409A (F)	FBJ-1-1/2	FBJE-1-1/2	5.25	L L					
	FBJ-2	FBJE-2	7			3/8	1/2		
	FBJ-2-1/2	FBJE-2-1/2	8.75						
	FBJ-3	FBJE-3	10.5						
	FBS-1/8	FBSE-1/8	0.44		1/4, 3/8 3/8, 1/2				
	FBS-1/4	FBSE-1/4	0.88			3/8, <mark>1/2</mark>			
	FBS-1/2	FBSE-1/2	1.75	-				_	
404A (S)	FBS-1	FBSE-1	3.5	C					
404A (S)	FBS-1-1/2	FBSE-1-1/2	5.25	C Z ZP					
	FBS-2	FBSE-2	7			3/8	1/2		
	FBS-3	FBSE-3	10.5						
	FBS-3-1/2	FBSE-3-1/2	12.25		760			0.45	0 60
	FBN-1/4	FBNE-14	0.88		700			0.45	0.68
	FBN-1/2	FBNE-1/2	1.75			1/4, 3/8	3/8, <mark>1/2</mark>		
	FBN-1	FBNE-1	3.5	C CP100					
407C (N)	FBN-1-1/2	FBNE-1-1/2	5.25	GA					
22 (V)	FBN-2	FBNE-2	7	Z					
	FBN-2-1/2	FBNE-2-1/2	8.75	ZP40		3/8	1/2		
	FBN-3	FBNE-3	10.5						
	FBN-4	FBNE-4	14						
	FBP-1/8	FBPE-1/8	0.44						
	FBP-1/4	FBPE-1/4	0.88			1/4, 3/8	3/8, 1/2		
	FBP-1/2	FBPE-1/2	1.75	-					
E07 (D)	FBP-1	FBPE-1	3.5	Ç					
507 (P)	FBP-1-1/2	FBPE-1-1/2	5.25	C Z ZP					
	FBP-2	FBPE-2	7			3/8	1/2		
	FBP-3	FBPE-3	10.5						
	FBP-3-1/2	FBPE-3-1/2	12.25						

THERMOSTATIC EXPANSION VALVES 22, 134a, 404A, 407C, 409A, 410A, 507

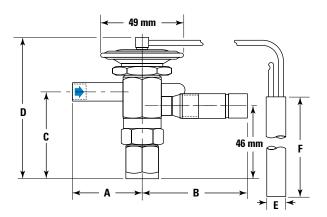
Type RE – Knife Edge Joint Standard Cap Tube Length 60 inches (1.5 m)

The Type RE valve is a small balanced port valve designed for use on refrigeration applications as well as residential and small commercial air conditioning and

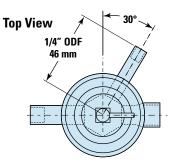
heat pump units. The balanced port design provides exceptional control of refrigerant in both directions, making this valve an excellent choice for heat pump systems.

Dimensions - Connections

VALVE	FITTING SIZE		mm						
TYPE	Inches	Α	В	C	D				
RE-	3/8 ODF	43	63	55	90				
1, 1-1/2 & 2*	1/2 ODF	45	63	55	90				
RE- 3, 4, 5, 6 & 8	3/8 ODF	43	63	55	90				
	1/2 ODF	45	63	55	90				
	5/8 ODF	34	63	55	90				
	7/8 ODF	—	61	55	90				
DE	5/8 ODF	38	_	59	97				
RE-	7/8 ODF	53	_	59	97				
12-1/2 & 15	7/8 ODF Ext.	_	64	59	97				


*1/2 ODF inlet available on 2 ton valves only.

Specifications


REFRIGERANT (Sporlan Code)	VALVE TYPE	NOMINAL CAPACITY kW of Refrigeration	ELEMENT SIZE NO.	THERMOSTATIC CHARGES AVAILABLE	STANDARD TUBING LENGTH m	otherwise	DF are standard mished unless specified.	NET WEIGHT – kg	SHIPPING WEIGHT – kG									
				F	F	INLET	OUTLET											
	RNE-1	3.5																
	RNE-1-1/2	5.25																
	RNE-2	7		C		3/8	1/2											
	RNE-3	10.5	43	CP100														
407C (N)	RNE-4	14	GA															
22 (V)	RNE-5	17.5		Z ZP40	-	4/0	F (0	-										
	RNE-6	21		2140		1/2	5/8	-										
	RNE-8 RNE-10	28 35				5/8	7/8	-										
		42	45-5			5/8	7/8 Ext.											
	RNE-12 RJE-1/2																	
	RJE-1/2	1.75 3.5	-															
	RJE-1-1/2	5.25																
134a (J)	RJE-1-1/2	5.25	43	С		3/8	1/2											
409A (F)	RJE-2-1/2	8.75	40	Ŭ														
	RJE-3	10.5	-															
	RJE-4	10.5				1/2	5/8	-										
	RSE-1/2	1.75			1.5	1/2	J/0	0.45	0.68									
	RSE-1	3.5	-	-	-													
	RSE-1-1/2	5.25		С														
404A (S)	RSE-2	7	43	Z		3/8	1/2											
507 (P)	RSE-3	10.5		ZP														
	RSE-3-1/2	12.25																
	RSE-4	14				1/2	5/8	-										
	RZE-1	4.20																
	RZE-1-1/2	7.35																
	RZE-2	9.66																
	RZE-3	13.4				3/8	1/2											
4404 (7)	RZE-4	17.6	45	CP200														
410A (Z)	RZE-5	21.0		GA														
	RZE-6	25.2				1/2	5/8											
	RZE-8	33.6				5/8	7/8											
	RZE-12-1/2	43.8	45.5			E /0	7/8 Ext.											
	RZE-15	50.8	40-0	45-5		5/8	//O EXI.											

① Valves are also available as special order with SAE connections.

Note: Valves with SAE inlet and outlet fittings are available only with the 1/4" SAE flare external equalizer; valves with ODF fittings are available only with the 1/4" ODF external equalizer. Note: Valves can be supplied with internal equalizer on valves with nominal capacity of 2 or less.

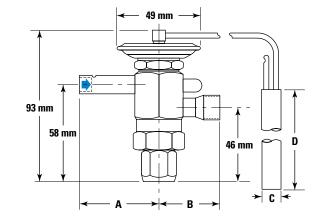
Bulb Sizes							
THERMOSTATIC	mm						
CHARGE	E	F					
C	13	76					
Z	13	76					
CP100, CP200	13	76					
GA	19	51					
ZP	13	76					

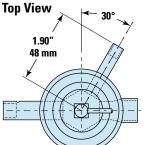
22, 407C, 410A

Type RCE – Knife Edge Joint Standard Cap Tube Length 30 inches (760 mm)

Type RC valves contain internal check valves to allow reverse flow on heat pump applications. This eliminates the need for an external check valve piped around the TEV

for reverse flow. The RC valve can be used on Heat Pump and Air Conditioning (cooling only) applications.


Exact replacement valves for the CBI, CBBI, BI, and I valves are available from the OEM and should be ordered from the OEM during the warranty period of the equipment, or when special features such as specific bleed ports, connections, configurations, capillary tube lengths, etc. are required.


Replaceable elements available for these valves are the following: R-22, Element Kit Number KT-43-VGA-30", and R-410A, Element Kit Number KT-45-ZGA-30".

The Type RC thermostatic expansion valves are only available with the specifications shown below.

Dimensions – Connections

		mm			
VALVE TYPE	FITTING SIZE – Inches	Α	В		
	3/8 ODF	48.8	36.8		
RCE- 1, 1-1/2 & 2	1/2 ODF	50.3	36.8		
1, I-1/2 Q 2	5/8 ODF	_	38.9		
BAF	3/8 ODF	48.8	36.8		
RCE- 3, 4, 5 & 6	1/2 ODF	50.3	36.8		
J, 4, J C U	5/8 ODF	—	38.9		

Bulb Sizes

THERMOSTATIC	m	mm			
CHARGE	C	D			
NGA	19	51			
NCP100	13	76			
ZCP200	13	76			
ZGA	19	51			

*1/2 ODF inlet available on 2 ton valves only.

Specifications – Element Size No. 43 (No. 45 for R-410A), Knife Edge Joint

REFRIGERANT (Sporlan Code)	VALVE TYPE	EXTERNAL EQUALIZER ② ③	NOMINAL CAPACITY kW of Refrigeration	THERMOSTATIC CHARGES AVAILABLE	STANDARD TUBING LENGTH mm	Blue figures and will be fu otherwise	N – Inches① are standard rnished unless specified.	NET WEIGHT – kG	SHIPPING WEIGHT – kG
	RCNE-1		3.5		-	INLET	OUTLET		
	RCNE-1-1/2		5.3						
	RCNE-2-GA	1/4 SAE	7.0	CP100	jĂ	3/8	1/2		
407C (N)	RCNE-3-GA		11						
22(0)	RCNE-4-GA	1/4 ODF	14	GA		1/2	1/2	0.57	
	RCNE-5-GA		18						
	RCNE-6-GA		21						
	RCZE-1		4.20		760			0.57	0.68
	RCZE-1-1/2		7.36			0.40	4/0		
	RCZE-2-GA		9.66			3/8	1/2		
410A (Z)	RCZE-3-GA	1/4 ODF	13.4	CP200 GA					
	RCZE-4-GA	7 -	17.6	UA		1/2	1/2		
	RCZE-5-GA		21.0			1/2	E /0		
	RCZE-6-GA		25.2			1/2	5/8		

0 Valves are also available as special order with Chatleff connections.

Values with SAE inlet and outlet fittings are available only with the 1/4"SAE flare external equalizer; values with ODF fittings are available only with the 1/4" ODF external equalizer.

• Valves with Chatleff fittings are available only with the 1/8" OD x 24" long tube with flare and nut external equalizer.

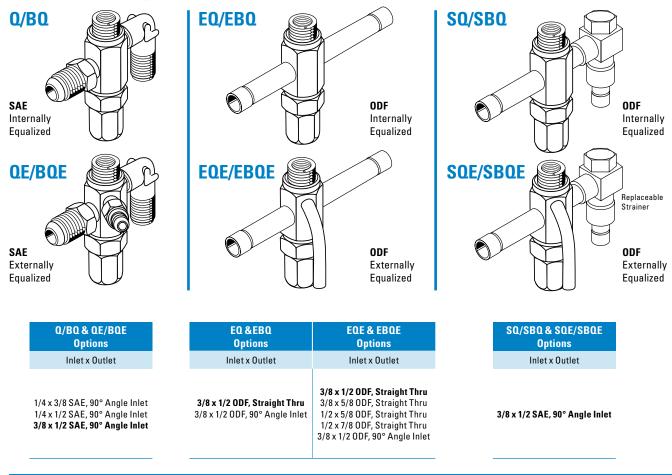
THERMOSTATIC EXPANSION VALVES 22, 134a, 404A, 407C, 409A, 410A, 507

Type Q and BQ

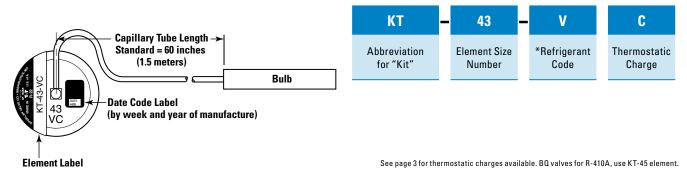
The Series Q and BQ are replaceable cartridge style thermostatic expansion valves, available in both conventional (Type Q) and balanced port (Type BQ) configurations. These valves can be supplied as a complete valve or as three component parts, body, cartridge, and thermostatic element. They are designed for small refrigeration systems, including refrigerated cases, coolers and freezers, and are also well suited for air conditioning and heat pump duty.

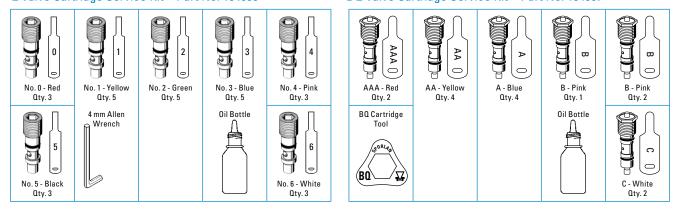

		NON	INAL CAPACITY (kW)			CARTRIDGE	
	R-22 R-407C	R-134a	R-404A R-507	R-409A	R-410A	SIZE	CARTRIDGE CODE	COLOR CODE
	0.88	0.44	0.44	0.44	—	0	QC-0	Red
D	2.63	0.88	0.88	0.88	—	1	QC-1	Yellow
s (3.5	1.75	1.75	1.75	—	2	QC-2	Green
SERIES	5.25	3.5	3.5	3.5	—	3	QC-3	Blue
浜	8.75	5.25	5.25	5.25	—	4	QC-4	Pink
0,	10.5	7	7	7	—	5	QC-5	Black
	17.5	10.5	10.5	10.5	—	6	QC-6	White
BQ	1.16	0.7	0.7	0.7	1.17	AAA	BOC-AAA	Red
B	2.35	1.16	1.16	1.16	2.64	AA	BOC-AA	Yellow
Щ	5.25	3.5	3.5	3.5	6.15	А	BQC-A	Blue
SERIES	10.5	6.13	6.13	6.13	12.3	В	BQC-B	Pink
S	19.25	10.5	10.5	10.5	21.1	C	BQC-C	White

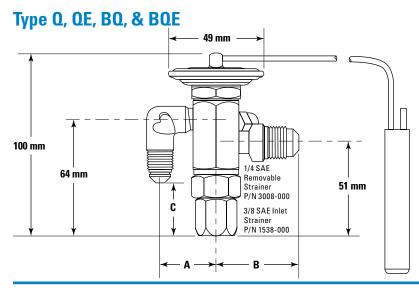
Q valve not suitable for R-410A. BQ valve cartridges are available with 15% bleed port.

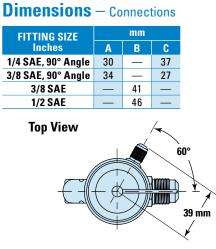

Q – Valve Nomenclature/Ordering Instructions

	QE	-	0	(1/3T)	-	V	C	_	3/8″	K	1/2″	х	1/4	х	5′
Valv	ve Type														
Inte	EQ, SQ = ernally valized		Cartridge Size	Nominal Capacity (Tons)		Refrigerant Code	Thermostatic Charge		Inlet Connection Size		Outlet Connection Size		External Equalizer Connection Size		Capillary Tubing Length Inches
= Ex	EQE, SQE xternally valized			(1010)									5120		or Feet

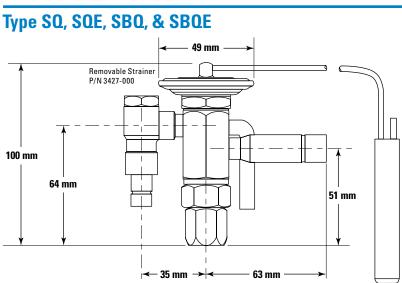

BQ – Valve Nomenclature/Ordering Instructions

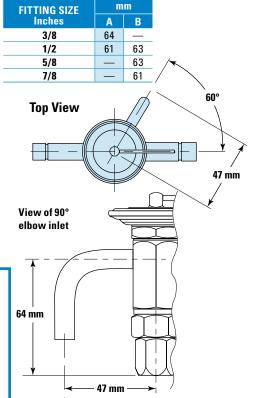

Selecting Body Type

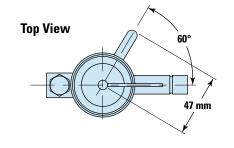



Selecting The Element


Selecting The Cartridge — See table on previous page for cartridge codes.Q Valve Cartridge Service Kit — Part No. 184000BQ Valve Cartridge Service Kit — Part No. 184007







Dimensions - Connections

Series Q & BQ Bulb Sizes – mm

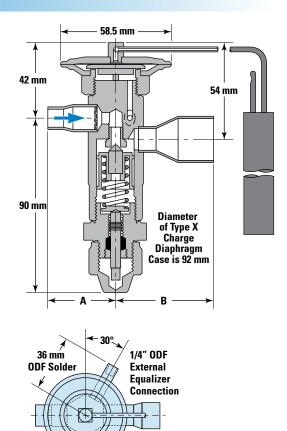
	REFRIGERANT									
STANDARD CHARGES	22	134a	404A	507						
C		13 OD x 76								
Z & ZP	13 OD x 76	_	130D x 76							
CP		13 0[D x 76							
VGA	19 OD x 51	_								

22, 134a, 404A, 507

Type S

Standard Cap Tube Length 60 inches (1.5 m)

Sporlan Type S valve is a brass bar body, externally adjustable valve with ODF solder connections. The thermostatic element is replaceable, and the inlet connection has a permanent 12 mesh strainer. This valve is designed for both air conditioning and refrigeration applications.


Dimensions - Connections

VALVE	FITTING SIZE	m	m
TYPE	Inches	Α	В
	3/8 ODF	34	—
	1/2 ODF	33	34.5
S	5/8 ODF	38	40
	7/8 ODF	—	54
	1-1/8 ODF	—	55.5

Bulb Sizes

STANDARD	REFRIGERANT								
CHARGES	22	134a	404A	507					
C		13 OD x 89							
Z & ZP Series	13 OD x 89	-	13 OD x 89						
Х	19 OD x 102	-	19 0[) x 102					
CP Series		13 OD x 89 –							
VGA	19 OD x 51	_							

Specifications — Element Size No. 83, Knife Edge Joint

Top View

	VALVE	ТҮРЕ		2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	0 GTH		DNS - Inches Solder	kg	a S
REFRIGERANT (Sporlan Code)	INTERNAL EQUALIZER ①	EXTERNAL EQUALIZER	NOMINAL CAPACITY kW of Refrigeration	THERMOSTATIC CHARGES AVAILABLE	STANDARD TUBING LENGTH m	Blue figures and will be fu	are standard rnished unless specified. OUTLET	NET WEIGHT -	SHIPPING WEIGHT - kg
	SN-2	SNE-2	7.0						
	SN-3	SNE-3	11			3/8 or 1/2	5/8, 7/8 or 1-1/8		
	SN-4	SNE-4	14			4/2			
407C (N)	SN-5	SNE-5	18			1/2	5/8, <mark>7/8</mark> or 1-1/8		
22 (V)	_	SNE-8	28			E /0	7/0 1 1/0		
		SNE-10	35			5/8	7/8 or 1-1/8		
	—	SNE-15	56.5			7/8	1-1/8		
	SJ-2	SJE-2	7.0	m		3/8 or <mark>1/2</mark>	5/8, 7/8 or 1-1/8		
	SJ-2-1/2	SJE-2-1/2	8.8	Refer to Recommended Thermostatic Charges on page 3		1/2	5/8, 7/8 or 1-1/8		
134a (J)	SJ-3	SJE-3	11	Refer to Recommended mostatic Charges on pa		1/2	5/0, 1/0 UI 1-1/0		
409A (F)		SJE-5	18	nen es o		5/8	7/8 or 1-1/8		
	—	SJE-6	21	nmo		5/0	7/0 01 1-1/0		
	—	SJE-10	35	ecc	1.5	7/8	1-1/8	0.9	1.4
	SS-2	SSE-2	7.0	tic R		3/8 or 1/2	5/8, 7/8 or 1-1/8		
	SS-3	SSE-3	11	fer 1 sta		1/2	5/8, 7/8 or 1-1/8		
404A (S)	SS-4	SSE-4	14	Rei		1/2	3,0,7,00111,0		
		SSE-6	21	Iher		5/8	7/8 or 1-1/8		
		SSE-7	25	F					
		SSE-10	35			7/8	1-1/8		
	SP-2	SPE-2	7.0			3/8 or 1/2	5/8, 7/8 or 1-1/8		
	SP-3	SPE-3	11			1/2	5/8, 7/8 or 1-1/8		
507 (P)	SP-4	SPE-4	14						
307 (17		SPE-6	21			5/8	7/8 or 1-1/8		
		SPE-7	25			-			
	—	SPE-10	35			7/8	1-1/8		

① Valves listed in this column NOT AVAILABLE with MOP Type air conditioning charges.

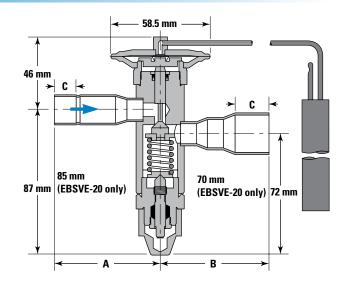
🗑 ODF Solder indicates a female connection on the valve of proper diameter to receive copper tubing of corresponding OD size. Thus 5/8" ODF will receive 5/8" OD tubing.

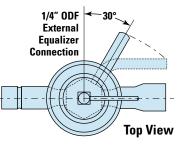
22, 134a, 404A, 407C, 409A, 507

Type EBS

Standard Cap Tube Length 60 inches (1.5 m)

Sporlan Type EBS valve is a brass bar body valve having the same physical size as the Type S valve except the Type EBS features a balanced port construction and extended ODF connections. The thermostatic element is replaceable. The balanced port construction makes this valve ideally


suited for refrigeration and air conditioning applications which operate over widely varying conditions.


Dimensions – Connections

VALVE	FITTING SIZE	mm					
ТҮРЕ	Inches	Α	В	C			
-	3/8 ODF	62	—	9			
	1/2 ODF	62	—	13			
EBS	5/8 ODF	62	64	19			
	7/8 ODF	—	64	20.5			
	1-1/8 ODF	—	77	24.5			

Bulb Sizes

STANDARD	REFRIGERANT									
CHARGES	22	134a	404A	507						
C		13 OD x 89								
Z & ZP Series	13 OD x 89	_	13 OD x 89							
CP Series		13 OD x 89								
VGA	19 OD x 51	_	-	-						

Specifications - Element Size No. 83, Knife Edge Joint

	VALVE TYPE		о Е., ш	BTH		ONNECTIONS - Inch		- kg	5															
REFRIGERANT (Sporlan Code)	EXTERNAL	NOMINAL CAPACITY kW of Refrigeration	THERMOSTATIC CHARGES AVAILABLE	STANDARD TUBING LENGTH m	Blue figu	Extended ODF Sold ires are standard an d unless otherwise s	d will be	NET WEIGHT - k	SHIPPING WEIGHT - kg															
	EQUALIZER	Ref C N	ACC	ST TUBI	INLET	OUTLET	EXTERNAL EQUALIZER	M	NI S															
	EBSNE-8	28			1/2 or <mark>5/8</mark>	7/8 or 1-1/8																		
407C (N)	EBSNE-11	39			1/2, <mark>5/8</mark> or 7/8	7/8, 1-1/8 or 1-3/8																		
22 (V)	EBSNE-15	53			5/8 or <mark>7/8</mark>	7/8, 1-1/8 or 1-3/8																		
	EBSNE-20	70	m		7/8	1-1/8 or 1-3/8																		
	EBSJE-5	18			1/2 or <mark>5/8</mark>	7/8 or 1-1/8																		
134a (J)	EBSJE-7	25	*Refer to Recommended Thermostatic Charges on page		1/2, <mark>5/8</mark> or 7/8	7/8 , 1-1/8 or 1-3/8	1/4																	
409A (F)	EBSJE-9	32			5/8 or <mark>7/8</mark>	7/8, 1-1/8 or 1-3/8	Pointed																	
134a (J) 409A (F)	EBSJE-12	42		com	com narg	com	com	1.5	7/8	1-1/8 or 1-3/8	Toward Bottom Cap	0.9	1.4											
	EBSSE-6	21	c CF	1.5	1/2 or <mark>5/8</mark>	7/8 or 1-1/8	or	0.9	1.4															
	EBSSE-7-1/2	26	*Refer to mostati	Refer to mostati		1/2, <mark>5/8</mark> or 7/8	7/8 , 1-1/8 or 1-3/8	Parallel to Outlet																
404A (S)	EBSSE-10	35			- Refe	5/8 or <mark>7/8</mark>	7/8, 1-1/8 or 1-3/8	Connection																
	EBSSE-13	46	Lher *		7/8	1-1/8 or 1-3/8																		
	EBSPE-6 21			1/2 or <mark>5/8</mark>	7/8 or 1-1/8																			
507 (D)	EBSPE-7-1/2	26			1/2, <mark>5/8</mark> or 7/8	7/8 , 1-1/8 or 1-3/8																		
507 (P)	EBSPE-10	35																		5/8 or <mark>7/8</mark>	7/8, 1-1/8 or 1-3/8			
	EBSPE-13	46			7/8	1-1/8 or 1-3/8																		

① ODF Solder indicates a female connection on the valve of proper diameter to receive copper tubing of corresponding OD size. Thus 5/8" ODF will receive 5/8" OD tubing.

* X charge not available.

Note: Not suitable for bi-directional flow control.

THERMOSTATIC EXPANSION VALVES 22, 134a, 404A, 407C, 409A, 410A, 507

Type O

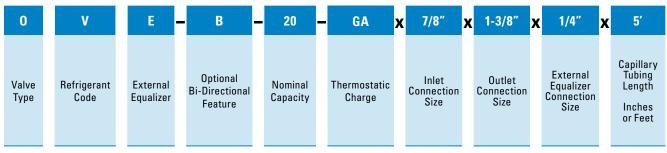
Standard Cap Tube Length 60 inches (1.5 m)

Sporlan Type O valve is a brass bar body, externally adjustable valve with ODF solder connections. The thermostatic element is replaceable, and the inlet connection has a permanent 12 mesh strainer. This valve type features a balanced port construction, and it is designed for both air conditioning and refrigeration applications. A synthetic seating surface provides tight shut-off during system off periods.

This valve type has two body styles: a small body which provides capacities up to 133 kW R-407C, and a large body which extends capacities to 315 kW R-407C.

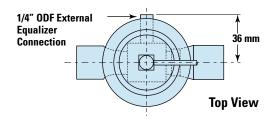
The valve can also be ordered as a bidirectional valve, allowing control of flow in both directions for use on heat pump applications.

Specifications – Element Size No. 83, No. 33, No. 85 (R-410A), and No. 85-3 (R-410A), Knife Edge Joint


	VALVE TYPE		DE.	С Ц	STANDARD TUBING LENGTH m)NS - Inches [:] Solder	kg	ي لاق
REFRIGERANT (Sporlan Code)	① EXTERNAL EQUALIZER	NOMINAL CAPACITY kW of Refrigeration	THERMOSTATIC Element Size No.	ELEMENT SIZE NO. THERMOSTATIC CHARGES AVAILABLE		Blue figures are s be furnished ur spec	standard and will lless otherwise ified.	NET WEIGHT - H	SHIPPING Weight - k
			F	-	F	INLET	OUTLET		
	0JE-12	42				7/8	1-1/8		
	0JE-16	56	83			1/0	1-3/8	0.9	1.4
134a (J)	0JE-23	81					1-5/0		
409A (F)	0JE-32	112				1-1/8			
	0JE-38	133	33			11/0	1-3/8 or 1-5/8	1.8	2.3
	OJE-40	140							
	0SE-12	42		~		7/8	1-1/8		
	0SE-21 74 83 m 1-3/8	1-3/8	0.9	1.4					
404A (S)	OSE-30	105		*Refer to Recommended			,.		
507 (P)	OSE-35	123		enc		1-1/8			
	OSE-38	133	33	aes and a mu		11/0	1-3/8 or 1-5/8	1.8	2.3
	OSE-45	158		eco har	1.5				
	ONE-20	70	83	80		7/8	1-1/8		
	ONE-30	105		er to		.,.	1-3/8	0.9	1.4
407C (N)	ONE-38	133	33-8	Refe			,.		
22 (V)	ONE-40	140		ern *					
22(V)	ONE-55	193	33	Ę		1-1/8	1-3/8 or 1-5/8	1.8	2.3
	ONE-70	215							
	ONE-90	315	63-3						
	0ZE-20	70				7/8	1-1/8		
	0ZE-25	84	85			.,.	, .	0.9	1.4
410A (Z)	0ZE-35	116							
	0ZE-50	175	85-3			1-1/8	1-3/8	1.8	2.3
	0ZE-60	210							2.0

 ${igodedge}$ Standard External Equalizer Connection 1/4" ODF Solder, 1/4" SAE flare connection available on request.

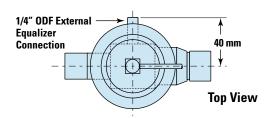
ODF Solder indicates a female connection on the valve of proper diameter to receive copper tubing of corresponding OD size. Thus 5/8" ODF will receive 5/8" OD tubing.


* X charge not available.

O – Valve Nomenclature/Ordering Instructions

22, 134a, 404A, 410A, 507

Type O with Number 83 or 85 Element

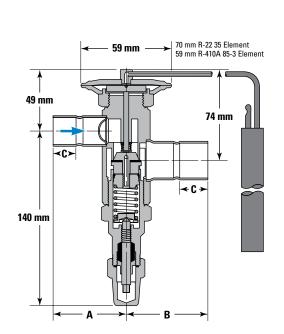

Dimensions – Connections

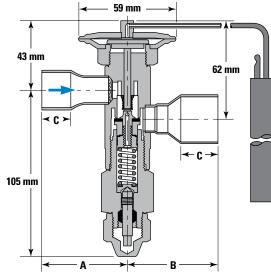
VALVE	FITTING SIZE			
ТҮРЕ	Inches	Α	В	C
0	7/8 ODF	53	—	19
	1-1/8 ODF	56	57	25
	1-3/8 ODF	—	61	25

Bulb Sizes

STANDARD	REFRIGERANT				
CHARGES	22	134a	404A	410A	507
C		13 OD x 89			13 OD x 89
Z & ZP Series	13 OD x 89	—	13 OD x 89	_	13 OD x 89
CP Series		13 OD x 89			—
VGA	19 OD x 51	—	_	_	—
ZGA	—	—	—	19 OD x 51	—

Type O with Number 33 or 85-3 Element




Dimensions - Connections

VALVE	FITTING SIZE			
ТҮРЕ	Inches	Α	В	C
0	1-1/8 ODF	68	—	23
	1-3/8 ODF	_	76	25
	1-5/8 ODF	_	79	28

STANDARD	REFRIGERANT				
CHARGES	22	134a	404A	410A	507
C	190D x 102	13 OD x 127	19 OD x 102	—	19 OD x 102
Z & ZP Series	190D x 102	_	19 OD x 102	—	19 OD x 102
CP Series		19 OD x 102			—
VGA	19 OD x 102	19 OD x 102 — —			—
ZGA	—	—	—	19 OD x 51	—

22, 134a, 404A, 407C, 409A, 507

Type H

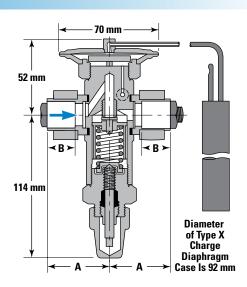
Brass bar body, externally adjustable valve with flange connections. Inlet flange bushing has a permanent 16 mesh strainer. The FPT flange connection requires the K-1178 adapter kit. This valve provides the smallest capacity TEVs with flange connections and it is suitable for both air conditioning and refrigeration applications.

Dimensions – Connections

VALVE	SOLDERING	m	m
ТҮРЕ	BUSHING	Α	В
H	1/2	51	22
	5/8	51	22
	7/8	51	22
	1-1/8	52	24

Bulb Sizes

STANDARD	REFRIGERANT				
CHARGES	22	134a	404A	507	
C	19 OD x 102	13 OD x 127	19 OD	x 102	
Z & ZP Series	19 OD x 102	_	19 OD x 102		
Х	19 OD x 102	_	19 OD x 102		
CP Series	19 OD x 102 —				
VGA	19 OD x 102	—	—	—	


Specifications - Element Size No. 33, Gasket Joint, Standard Tubing Length 1.5 Meters Flange Ring Size - 1-1/4" OD x 1" ID.

	TYPE & CAPACITY		2	CONNECTI	NDARD ONS Inches
REFRIGERANT (Sporlan Code)	@INTERNAL EQUALIZER	③EXTERNAL EQUALIZER	THERMOSTATI CHARGES AVAILABLE	ODF SOLDER FLANGE Blue figures are standard and will be furnished unless otherwise specified.	
				INLET	OUTLET
	HJ-1-1/2	HJE-1-1/2		1/2	5/8
	HJ-3	HJE-3			
134a (J)	HJ-4	HJE-4	Refer to Recommended Thermostatic Charges on Page 3	5/8	7/8
409A (F)	HJ-5	HJE-5		5/0	1/0
		HJE-8			
	—	HJE-12		7/8	1-1/8
	HS-1-1/2	HSE-1-1/2	end on	1/2	5/8
	HS-3	HSE-3	Refer to Recommended nostatic Charges on Pe		
404A (S)	HS-4	HSE-4	con	5/8	7/8
507 (P)		HSE-6-1/2	E Re	5/0	1/0
		HSE-9	atic		
	—	HSE-12	fer osta	7/8	1-1/8
	HN-2-1/2	HVE-2-1/2	. Be	1/2	5/8
	HN-5-1/2	HVE-5-1/2	hei		
407C (N)	_	HVE-7	F	5/8	7/8
22 (V)	—	HVE-11			
		HVE-16		7/8	1-1/8
	—	HVE-20		7/0	1-1/0

① Connections shown are most readily available. Connections shown in Bulletin 10-10 are also available on special order.

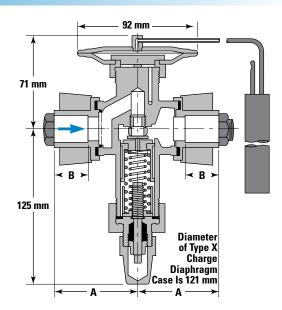
Connections shown are most reading available. Connections shown in Bulletin to To are also available on special order.
 Valves listed in this column NOT AVAILABLE with MOP Type air conditioning charges.
 Standard External Equalizer Connection 1/4" SAE Flare, 1/4" ODF Solder connection available on request.
 ODF Solder indicates a female connection on the valve of proper diameter to receive copper tubing of corresponding OD size. Thus 1/2" ODF will receive 1/2" OD tubing.
 Tubing lengths other than standard available upon special order at an additional cost.
 NOTE: The H valve is not available for R-410A.

External Equalizer Connection is required whenever valves are used with Sporlan Refrigerant Distributors.

22, 134a, 404A, 407C, 409A, 507

Type M

Cast bronze body, externally adjustable valve with flange connections. Inlet has a 12 mesh strainer. This valve type provides 🛒 valve capacities greater than the Type H and it is suitable for air conditioning and refrigeration applications. Flanges for the Type M valve are interchangeable with the Type V valve.



Dimensions – Connections

VALVE	SOLDERING	mm		
TYPE	BUSHING	Α	В	
н	7/8	60	22	
	1-1/8	70	24	
	1-3/8	70	24	
	1-5/8	82	31	

Bulb Sizes

STANDARD	REFRIGERANT				
CHARGES	22	134a	404A	507	
C	22 OD x 152				
Z & ZP Series	22 OD x 152	_	22 O D	x 152	
Х	22 OD x 152	_	22 O D	x 152	
CP Series		19 OD x 102		—	
VGA	19 OD x 102		_	_	

Specifications - Element Size No. 63, Gasket Joint, Standard Tubing Length 1.5 Meters

Flange Ring Size -1-3/4'' OD x 1-1/4'' ID.

	TYPE & CAPACITY	<u>ಲ</u>		NDARD ONS Inches
REFRIGERANT (Sporlan Code)	@EXTERNAL EQUALIZER	WILL STREES WILL		SOLDER NGE are standard mished unless
			INLET	OUTLET
	MJE-15		7/0	
134a (J)	MJE-20	nded on Page 3	7/8	
409A (F)	MJE-25		1-1/8	1-1/8
	MSE-15			
404A (S)	MSE-20	ges	7/8	
507 (P)	MSE-25	ecol		
	MSE-30	tic (1-1/8	
	MNE-21	Refer to Recommended Thermostatic Charges on Pa		
407C (N) 22 (V)	MNE-26	erme	7/8	
	MNE-34	Ť		
	MNE-42		1-1/8	

O Connections shown are most readily available. Connections shown in Bulletin 10-10 are also available on special order.
 Standard External Equalizer Connection 1/4" SAE Flare, 1/4" ODF Solder connection available on request.
 ODF Solder indicates a female connection on the valve of proper diameter to receive copper tubing of corresponding OD size. Thus 1/2" ODF will receive 1/2" OD tubing.
 Tubing lengths other than standard available upon special order at an additional cost.

NOTE: The M valve is not available for R-410A. External Equalizer Connection is required whenever valves are used with Sporlan Refrigerant Distributors.

22, 134a, 404A, 407C, 409A, 507

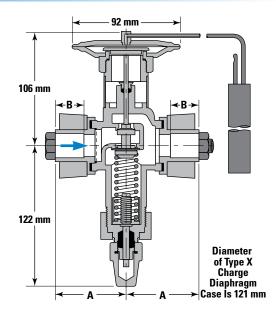
Type V

Cast bronze body, externally adjustable valve with flange connections. Inlet has a 12 mesh strainer. This valve type features a dual port semi-balanced design. This valve type provides valve capacities greater than the Type M and is suitable for air conditioning and refrigeration applications. Flanges for the Type V are interchangeable with the Type M.

Dimensions – Connections

VALVE	SOLDERING	m	m
ТҮРЕ	BUSHING	Α	В
v	7/8	60	22
	1-1/8	70	24
	1-3/8	70	24
	1-5/8	82	31

Bulb Sizes


STANDARD		REFRIGE	RANT		
CHARGES	22	134a	404A	507	
C	22 OD x 152				
Z & ZP Series	22 OD x 152	—	22 OD x 152		
Х	22 OD x 152	—	22 OD x 152		
CP Series	19 OD x 102 —			—	
VGA	19 OD x 102		—	_	

Specifications - Element Size No. 63, Gasket Joint, Standard Tubing Length 1.5 Meters Flange Ring Size -1-3/4'' OD x 1-1/2'' ID.

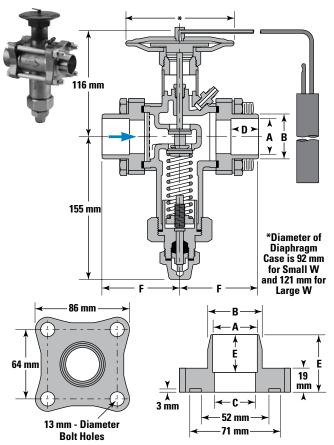
	TYPE & CAPACITY @EXTERNAL EQUALIZER	2	①STA CONNECT	NDARD ION Inches
REFRIGERANT (Sporlan Code)	@EXTERNAL EQUALIZER	HERMOSTA CHARGE AVAILABLI	FLA Blue figures and will be fu	SOLDER NGE are standard rnished unless specified.
			INLET	OUTLET
	VJE-35	e 3		
134a (J) 409A (F)	VJE-45	Pag		
403A (1)	VJE-55	ende on		
	VSE-38	des um		
404A (S) 507 (P)	VSE-50	eco	1-3/8	1-3/8
507 (F)	VSE-70	to R tic (
	VNE-52	Refer to Recommended mostatic Charges on Pé		
407C (N)	VNE-70	Refer to Recommended Thermostatic Charges on Page 3		
22(V)	VNE-100	É		

O connections shown are most readily available. Connections shown in Bulletin 10-10 are also available on special order.
 Standard External Equalizer Connection 1/4" SAE Flare, 1/4" ODF Solder connection available on request.
 ODF Solder indicates a female connection on the valve of proper diameter to receive copper tubing of corresponding OD size. Thus 1/2" ODF will receive 1/2" OD tubing.
 Tubing lengths other than standard available upon special order at an additional cost.
 NOTE: The V valve is not available for R-410A.

External Equalizer Connection is required whenever valves are used with Sporlan Refrigerant Distributors.

22, 134a, 407C, 409A

Type W


Cast bronze body, externally adjustable valve with flange connections. Inlet has a 12 mesh strainer. This valve type features a dual port semi-balanced design and it is primarily for large capacity chillers. This valve type provides the largest valve capacities available for flange connection TEVs.

Dimensions – Connections

VALVE		mm									
ТҮРЕ	FITTING SIZE	Α	В	C	D	E	F				
	1-1/8	28	32	27	23	40	78				
w	1-3/8	35	39	33	25	41	80				
vv	1-5/8	41	45	38	28	44	83				
	2-1/8	54	62	49	34	39	83				

Bulb Sizes

	R	EFRIGERANT			
STANDARD CHARGES	ELEMENT SIZE NUMBER	22	134a		
C		22 O D	x 152		
Z & ZP Series		22 OD x 152	. 152 		
Х	63	22 OD x 152	(152 		
CP Series		19 O D	x 102		
VGA		19 OD x 102	—		
G	7	19 OD x 102	—		

Specifications – Element Size No. 63, Small Capacity No. 7 Large Capacity – Gasket Joint, Standard Tubing Length 3 Meters 5 Flange Ring Size - 2-3/4" OD x 2-3/16" ID.

REFRIGERANT (Sporlan Code)	TYPE & CAPACITY @EXTERNAL EQUALIZER	ELEMENT SIZE NUMBER	THERMOSTATIC Charges Available	③ODF FL/ Blue figures and will be fi	ANDARD IONS Inches SOLDER ANGE s are standard urnished unless e specified.
				INLET	OUTLET
134a (J)	WJE-80	63	4		
409A (F)	WJE-110	7	G only	4.5/0	2.4/0
407C (N)	WNE-135	63	۹	1-5/8	2-1/8
407C (N) 22 (V)	WNE-180	7	G only		

Connections shown are most readily available. Connections shown in Bulletin 10-10 are also available on special order.
 Standard External Equalizer Connection 1/4" SAE Flare, 1/4" ODF Solder connection available on request.
 ODF Solder indicates a female connection on the valve of proper diameter to receive copper tubing of corresponding OD size. Thus 1/2" ODF will receive 1/2" OD tubing.
 Refer to Recommended Thermostatic Charges, Page 3.
 Tubing loads a theorethen standard us include the user and the

© Tubing lengths other than standard available yoon special order at an additional cost. NOTE: The W valve is not available for R-410A.

External Equalizer Connection is required whenever valves are used with Sporlan Refrigerant Distributors.

		_				-		
					REFRIG	ERANT		
				134a			409A	
	VDEC			RECOMM	ENDED THE	RMOSTATI	C CHARGE	
VALVE T	TPES	CAPACITY		JC, JCP60			FC, FCP60	
					ORATOR T	MPERATU		
		kW	5°	-5°	-15°	5°	-5°	-15°
FB		0.44	0.76	0.89	0.80	0.76	0.90	0.81
FB		0.88		1.77		1.52		1.62
FB			1.51		1.59		1.80	
		1.8	2.85	3.35	3.01	2.87	3.39	3.06
FB		3.5	4.80	5.64	5.07	4.83	5.71	5.15
FB	-	5.3	5.97	7.01	6.30	6.01	7.10	6.41
FB-S		7.0	8.17	8.73	8.01	8.23	8.84	8.15
FB-S	S	8.8	10.2	10.9	10.0	10.3	11.0	10.2
S		11	12.3	13.1	12.0	12.3	13.3	12.2
S		18	20.6	18.8	15.6	20.7	19.0	15.8
S		21	24.7	22.5	18.7	24.9	22.8	19.0
S		35	38.2	36.3	31.1	38.4	36.7	31.7
Н		5.3	6.54	6.99	6.40	6.58	7.07	6.52
Н		11	12.3	13.1	11.3	12.3	13.3	11.5
Н		14	16.3	17.5	15.1	16.4	17.7	15.3
Н		18	20.4	21.8	18.8	20.6	22.1	19.1
н		28	30.6	32.8	28.2	30.8	33.1	28.7
н		42	47.8	51.1	44.0	48.1	51.7	44.8
M		53	63.3	67.7	56.7	63.7	68.5	57.7
M		70	81.7	87.3	73.2	82.3	88.4	74.5
M		88	102	109	91.5	103	110	93.1
IVI	D	ALANCED PORT					110	33.1
P	D						0.00	0.00
R		1.8	2.44	2.86	2.57	2.45	2.90	2.62
R		3.5	4.27	5.01	4.50	4.29	5.07	4.58
R		5.3	5.61	6.58	5.91	5.64	6.66	6.02
R		7.0	7.80	9.16	8.23	7.85	9.27	8.37
R		8.8	10.2	12.0	10.8	10.3	12.2	11.0
R		11	12.2	14.3	12.9	12.3	14.5	13.1
R		14	14.6	17.2	14.3	14.7	17.4	14.6
EBS	6	18	20.8	20.7	17.8	21.0	21.0	18.1
EBS	6	25	28.7	28.6	24.6	28.9	28.9	25.0
EBS	6	32	38.1	36.3	29.5	38.4	36.7	30.0
EBS-	0	42	47.8	51.1	41.5	48.1	51.7	42.3
0		56	63.3	67.7	59.4	63.7	68.5	60.4
0		81	96.6	108	92.6	94.2	109	94.2
0		110	130	150	129	131	152	131
0		140	163	188	161	164	190	164
v		120	143	153	126	144	155	128
v		160	184	197	162	185	199	164
v		190	225	240	198	226	243	201
Ŵ		280	347	371	291	350	376	296
w		390	486			490		
VALVE TYPE	CARTRIDGE				THERMOST			
Q-EQ-SQ	O	0.59			0.80		0.88	0.82
	1							
0-E0-S0		0.88	1.84	1.97	1.80	1.85	1.99	1.83
0-E0-S0	2	1.8	2.65	2.84	2.60	2.67	2.87	2.65
0-E0-S0	3	3.5	4.08	4.37	4.00	4.11	4.42	4.07
0-E0-S0	4	5.3	5.72	6.11	5.60	5.76	6.19	5.70
0-E0-S0	5	7.0	8.17	8.73	8.01	8.23	8.84	8.15
Q-EQ-SQ	6	8.8	11.0	11.8	10.8	11.1	11.9	11.0
VALVE TYPE	CARTRIDGE				THERMOST			
BQ-EBQ-SBQ	AAA	0.70	0.85	0.99	0.95	0.85	1.00	0.97
BQ-EBQ-SBQ	AA	1.2	1.84	1.97	1.80	1.85	1.99	1.83
BQ-EBQ-SBQ	Α	3.5	4.08	4.37	4.00	4.11	4.42	4.07
BQ-EBQ-SBQ	В	7.0	6.94	7.42	6.80	6.99	7.51	6.92
BQ-EBQ-SBQ	C	11	12.3	13.1	12.0	12.3	13.3	12.2
	-							

	L	QUID T	ГЕМРЕ	RATU	RE ENT	TERIN	G TEV '	°C
								60°
		FLIQU	ID TEN	IPERA	TURE			
134a	1.64	1.52	1.39	1.26	1.13	1.00	0.87	0.73
409A	1.51	1.41	1.31	1.21	1.11	1.00	0.89	0.78

These factors include corrections for liquid refrigerant density and net refrigerating effect and are based on an evaporator temperature of -15°C. However, they may be used for any evaporator temperature from -15°C to 5°C since the variation in the actual factors across this range is insignificant.
 EVAPORATOR TEMPERATURE °C
 2
 4
 6
 8
 10
 12
 14
 16

 °C
 CORRECTION FACTOR, CF PRESSURE DROP

 12
 14
 16

 °C
 0.71
 1.00
 1.22
 1.41
 1.58
 1.73
 1.87
 2.00

 -5° & -15°
 0.58
 0.82
 1.00
 1.15
 1.29
 1.41
 1.53
 1.63

TEV Capacity = TEV Rating x CF Liquid Temperature x CF Pressure Drop — Example: Actual capacity of a nominal 1-1/2 ton R-134a Type FB valve at -5°C evaporator, 8 bar pressure drop across the TEV, and a 30°C liquid temperature entering the TEV = 7.01 (from rating chart) x 1.13 (CF liquid temperature) x 1.15 (CF pressure drop) = 9.11 kW.

22, 407C

Air Conditioning, Heat Pump and Commercial Refrigeration Applications

							EFRIGERAN				
		NOMINAL			2					407C	
VALVE T	YPES	CAPACITY				OMMENDE	D THERMOS	STATIC CHA			
			VC	, VCP100, V	GA		VZ, VZP40			, NCP100, N	GA
							OR TEMPE	1	1		
		kW	5°	-5°	-15°	-20°	-30°	-40°	5°	-5°	-15°
FB		0.88	1.00	1.12	1.03	1.04	0.80	0.63	0.91	1.01	0.91
FB		1.8	1.99	2.25	2.06	2.08	1.61	1.25	1.81	2.02	1.82
FB FB		3.5	3.76	4.24	3.88	3.69	2.52	1.96	3.42	3.80	3.43
FB-S		5.3 7.0	6.01 6.87	6.78 7.75	6.21 7.10	5.68 6.78	3.57 4.68	2.78 3.65	5.47 6.26	6.08 6.96	5.48 6.27
FB-3		11	10.9	12.3	11.3	10.6	4.08	5.59	9.94	11.1	9.97
FB-S		14	13.4	12.3	13.9	13.1	8.77	6.84	12.2	13.6	12.3
S	3	14	16.7	18.8	17.0	16.4	11.8	9.22	15.2	16.9	12.3
S		28	25.7	29.0	24.6	23.4	15.9	12.3	23.4	26.0	21.8
S		35	32.1	36.2	30.8	29.3	19.8	15.3	29.2	32.5	27.2
S		53	49.8	56.2	47.7	46.1	31.2	24.9	45.3	50.4	42.2
H		8.8	8.04	8.90	8.12	8.12	5.09	4.28	7.32	7.99	7.17
H		19	18.0	19.9	18.2	18.0	11.1	9.34	16.4	17.9	16.1
Н		25	22.5	24.9	22.7	21.7	12.5	10.5	20.5	22.4	20.1
Н		39	33.8	37.4	34.1	31.6	17.0	14.3	30.7	33.5	30.1
Н		56	48.9	54.1	49.4	45.6	24.3	20.4	44.5	48.6	43.6
Н		70	71.4	79.1	72.1	68.9	39.5	33.2	65.0	70.9	63.7
М		74	69.0	77.9	75.3	74.8	53.6	45.2	62.9	69.9	66.5
М		91	85.1	96.0	92.9	96.7	75.7	63.9	77.5	86.1	82.0
М		120	109	123	119	120	89.1	75.2	99.4	111	105
М		150	135	152	147	151	107	86.2	123	137	130
				PORT THER							
R-R		3.5	3.21	3.62	3.32	3.32	2.52	1.96	2.92	3.25	2.93
R-R(5.3	5.62	6.34	5.81	5.42	3.57	2.78	5.12	5.69	5.13
R-R(7.0	7.39	8.33	7.63	7.12	4.68	3.65	6.72	7.48	6.74
R-R		11	10.3	11.6	10.6	10.0	6.73	5.25	9.35	10.4	9.38
R-R		14	13.5	15.2	13.9	13.1	8.77	6.84	12.3	13.7	12.3
R-R(18	16.1	18.1	16.6	15.4	10.0	7.83	14.6	16.3	14.7
R-R(C	21	19.3	21.7	18.5	16.8	10.4	8.00	17.5	19.5	16.3
R		28 35	25.7 33.5	29.0 37.8	26.5 34.6	23.2	12.0	9.27	23.4 30.5	26.0 33.9	23.4 30.6
R		44	33.5	43.8	40.1	—	—		30.5	39.3	30.6
EBS	6	28	27.4	43.8 29.5	25.4	24.5	16.8	13.0	24.9	26.5	22.4
EBS		39	37.0	39.9	34.3	33.1	22.7	17.5	33.7	35.8	30.3
EBS		53	49.7	54.4	43.7	42.0	29.1	23.4	45.3	48.8	38.6
EBS-		70	71.9	76.7	60.8	58.3	40.2	29.6	65.5	68.8	53.7
0	-	110	98.2	106	91.8	84.8	56.5	49.1	89.4	94.9	81.1
0		130	122	132	110	102	70.3	60.9	111	118	97.3
0		140	129	145	115	111	86.1	74.6	118	130	102
0		190	177	198	157	150	98.2	83.0	161	177	139
0		250	235	262	209	198	111	90.4	214	235	184
0		320	289	323	255	243	137	111	263	290	226
V		180	167	187	180	190	121	101	152	168	159
v		250	235	262	253	265	167	138	214	235	224
v		350	321	359	347	355	214	178	292	322	306
w		470	459	514	496	507	307	255	418	461	438
W		630	607	—	—	_	—	—	553	—	_
VALVE TYPE	CARTRIDGE			NVENTION							
Q-EQ-SQ	0	1.2	1.12	1.27	1.14	1.10	0.79	0.62	1.02	1.14	1.01
Q-EQ-SQ	1	2.6	2.41	2.72	2.45	2.50	1.99	1.55	2.19	2.44	2.16
	2	3.5	3.21	3.62	3.27	3.27	2.52	1.96	2.92	3.25	2.88
0-E0-S0	3	5.3	4.82	5.43	4.90	4.65	3.22	2.51	4.39	4.88	4.33
Q-EQ-SQ		8.8	8.03	9.06	8.16	8.25	6.43	5.02	7.31	8.13	7.21
Q-EQ-SQ Q-EQ-SQ	4	40		12.7	11.4	11.4	8.77	6.84	10.2	11.4	10.1 13.8
Q-EQ-SQ Q-EQ-SQ Q-EQ-SQ	5	12	11.2		15 7						
0-EQ-SQ 0-EQ-SQ 0-EQ-SQ 0-EQ-SQ	5 6	12 18	15.4	17.4	15.7	15.1		8.33		15.6	13.0
0-EQ-SQ Q-EQ-SQ Q-EQ-SQ Q-EQ-SQ VALVE TYPE	5 6 CARTRIDGE	18	15.4 BA	17.4 LANCED PO	ORT CARTR	IDGE THERI	MOSTATIC	EXPANSIO	N VALVES		
0-E0-S0 0-E0-S0 0-E0-S0 0-E0-S0 VALVE TYPE B0-EB0-SB0	5 6 CARTRIDGE AAA	18 1.2	15.4 BA 1.12	17.4 LANCED P(1.27	D <mark>rt Cartr</mark> 1.14	IDGE THERI 1.10	MOSTATIC 0.79	EXPANSIO 0.62	N VALVES 1.02	1.14	1.01
0-E0-S0 0-E0-S0 0-E0-S0 0-E0-S0 VALVE TYPE B0-EB0-SB0 B0-EB0-SB0	5 6 CARTRIDGE AAA AA	18 1.2 2.3	15.4 BA 1.12 2.41	17.4 LANCED P(1.27 2.72	D RT CARTR 1.14 2.45	IDGE THERI 1.10 2.50	MOSTATIC 0.79 1.99	EXPANSIO 0.62 1.55	N VALVES 1.02 2.19	1.14 2.44	1.01 2.16
0-E0-S0 0-E0-S0 0-E0-S0 VALVE TYPE B0-EB0-SB0 B0-EB0-SB0 B0-EB0-SB0	5 6 CARTRIDGE AAA AA A	18 1.2 2.3 5.3	15.4 BA 1.12 2.41 5.14	17.4 LANCED P(1.27 2.72 5.80	DRT CARTR 1.14 2.45 5.23	IDGE THERI 1.10 2.50 5.03	MOSTATIC 0.79 1.99 3.57	EXPANSIO 0.62 1.55 2.78	1.02 2.19 4.68	1.14 2.44 5.20	1.01 2.16 4.61
0-E0-S0 0-E0-S0 0-E0-S0 0-E0-S0 VALVE TYPE B0-EB0-SB0 B0-EB0-SB0	5 6 CARTRIDGE AAA AA	18 1.2 2.3	15.4 BA 1.12 2.41	17.4 LANCED P(1.27 2.72	D RT CARTR 1.14 2.45	IDGE THERI 1.10 2.50	MOSTATIC 0.79 1.99	EXPANSIO 0.62 1.55	N VALVES 1.02 2.19	1.14 2.44	1.01 2.16

	LI	QUID 1	ГЕМРЕ	RATU	RE EN	FERIN	<u>G TEV '</u>	°C
REFRIGERANT	-10°	0°	10°	20°	30°	40°	50°	60°
	ANT -10° 0° CORRECTION 1.52 1.42 1.73 1.59	N FAC	TOR, C	FLIQU	ID TEN	NPERA	TURE	
22	1.52	1.42	1.32	1.21	1.11	1.00	0.89	0.78
407C	1.73	1.59	1.45	1.30	1.15	1.00	0.84	0.67

EVAPORATOR		PRES	SURE	DROP	ACROS	S TEV	(bar)			
TEMPERATURE	2	4	6	8	10	12	14	16		
°C CORRECTION FACTOR, CF PRESSURE DROI										
5°	0.58	0.82	1.00	1.15	1.29	1.41	1.53	1.63		
-5° & -15°	0.50	0.71	0.87	1.00	1.12	1.22	1.32	1.41		
-20° & -30°	0.45	0.63	0.77	0.89	1.00	1.10	1.18	1.26		
-40°	0.41	0.58	0.71	0.82	0.91	1.00	1.08	1.15		

These factors include corrections for liquid refrigerant density and net refrigerating effect and are based on an evaporator temperature of -15°C. However, they may be used for any evaporator temperature from -15°C to 5°C since the variation in the actual factors across this range is insignificant.

TEV Capacity = TEV Rating x CF Liquid Temperature x CF Pressure Drop — Example: Actual capacity of a nominal 1-1/2 ton R-22 Type FB valve at -5°C evaporator, 10 bar pressure drop across the TEV, and a 30°C liquid temperature entering the TEV = 6.78 (from rating chart) x 1.11 (CF liquid temperature) x 1.12 (CF pressure drop) = 8.43 kW.

Air Conditioning, Heat Pump and Commercial Refrigeration Applications

	-							REFRIG	ERANT					
		NOMINAL			40	4A						07		
VALVE	TYPES	CAPACITY				REC	OMMEN	DED THE	<u>RMOST/</u>		RGE			
			8	CP115, S	<u>C</u>		SZ, SZP			PC			PZ, PZP	
		1-38/	F 0	F 0	450	200		ATOR T			450	200	200	-40°
FE	5	kW 0.44	5° 0.65	-5° 0.71	-15° 0.63	-20° 0.62	-30° 0.45	-40-	5° 0.64	-5° 0.70	-15° 0.62	- 20° 0.61	-30° 0.44	0.33
FE		0.44	1.12	1.24	1.10	1.12	0.45	0.33	1.10	1.21	1.08	1.10	0.44	0.33
FE		1.8	2.25	2.47	2.20	2.11	1.47	1.10	2.21	2.43	2.16	2.07	1.45	1.09
FE		3.5	3.90	4.29	3.81	3.43	2.08	1.56	3.83	4.21	3.75	3.38	2.05	1.54
FE		5.3	4.46	4.91	4.36	4.12	2.78	2.09	4.39	4.82	4.29	4.05	2.74	2.06
FB-		7.0	6.43	7.01	6.17	6.42	4.17	3.13	6.32	6.88	6.06	6.44	4.11	3.09
FB-	-S	11	8.72	9.59	8.49	7.90	5.12	3.84	8.57	9.41	8.34	7.77	5.05	3.79
S		14	12.9	14.0	12.1	12.3	9.45	8.15	12.6	13.8	11.9	12.1	9.31	8.05
S		21	17.8	17.1	14.4	15.2	12.3	9.89	17.5	16.8	14.2	14.9	12.1	9.77
S		25	22.7	21.8	18.4	19.3	15.6	12.6	22.3	21.4	18.0	19.0	15.4	12.4
S		35	32.5	31.8	28.4	30.3	26.2	23.5	31.9	31.3	27.9	29.8	25.8	23.2
H		5.3	4.84	4.85	4.54	4.94	3.99	3.30	4.76	4.76	4.46	4.86	3.93	3.26
Н		11	9.04	9.05	7.80	8.23	6.65	5.51	8.88	8.88	7.66	8.09	6.55	5.44
Н		14	12.9	12.9	10.7	11.3	9.31	7.71	12.7	12.7	10.5	11.1	9.17	7.62
н		23	21.0	21.0	17.4	18.0	14.5	12.0	20.6	20.6	17.1	17.7	14.3	11.8
Н		32	30.7	30.7	25.5	24.1	16.6	13.8	30.1	30.1	25.0	23.7	16.4	13.6
H		42	42.0	42.0	34.9	34.9	26.6	22.0	41.2	41.3	34.2	34.4	26.2	21.8
M		53 70	50.8 66.2	55.8 72.8	45.3 57.5	46.4 58.2	39.6 49.7	33.2 41.7	49.9 65.0	54.8 71.4	44.5 56.5	45.6 57.2	39.0 48.9	32.8 41.2
M		88	82.6	90.8	57.5 71.7	70.9	49.7 58.3	41.7	81.1	89.1	70.4	69.7	40.9 57.4	41.2
M		110	99.6	110	86.5	84.2	67.5	40.5 56.6	97.9	108	85.0	82.8	66.5	40.3 55.9
	<u> </u>			99.0 110 80.5 84.2 07.5 50.6 97.9 108 85.0 82.0								02.0	00.5	33.3
R		1.8	1.92	2.11	1.88	1.91	1.47	1.10	1.89	2.07	1.85	1.87	1.45	1.09
R		3.5	3.65	4.01	3.57	3.28	2.08	1.56	3.59	3.94	3.51	3.22	2.05	1.54
R		5.3	4.80	5.28	4.69	4.30	2.71	2.03	4.71	5.18	4.61	4.22	2.67	2.01
R		7.0	6.65	7.31	6.50	6.04	3.92	2.94	6.54	7.18	6.39	5.93	3.86	2.90
R		11	8.76	9.63	8.56	7.93	5.12	3.84	8.61	9.46	8.41	7.80	5.05	3.79
R		12	10.4	11.5	10.2	9.32	5.85	4.39	10.2	11.3	10.0	9.17	5.77	4.34
R		14	12.5	13.8	11.4	10.2	6.14	4.55	12.3	13.5	11.2	10.0	6.05	4.50
EB		21	18.1	18.6	15.7	15.4	10.6	9.87	17.7	18.3	15.4	15.2	10.5	9.75
EB		26	24.5	25.3	21.3	20.5	13.5	12.6	24.1	24.8	21.0	20.2	13.3	12.4
EB		35	30.2	31.7	25.3	24.6	17.9	15.4	29.6	31.2	24.9	24.2	17.6	15.3
EB		46	43.1	45.9	36.0	34.7	25.5 27.2	20.5	42.3	45.1	35.3	34.1	25.2	20.2
0		42 74	42.0 67.8	42.0 67.9	34.2 51.1	34.3 46.3	32.6	23.5 28.1	41.2 66.6	41.3 66.6	33.6 50.2	33.7 45.5	26.8 32.1	23.2 27.8
0		110	97.1	106	81.7	72.8	48.8	42.1	95.4	104	80.3	71.6	48.0	41.6
0		120	113	123	94.7	82.6	52.9	45.7	111	120	93.1	81.2	52.2	45.2
0		160	145	158	122	103	61.0	52.7	142	155	120	101	60.1	52.1
V		130	122	130	113	117	97.5	80.2	120	127	111	115	96.1	79.2
V		180	164	174	152	160	139	114	161	171	149	158	137	113
V		250	225	239	211	223	195	160	221	235	207	220	192	158
VALVE TYPE	CARTRIDGE					LCARTR								
Q-EQ-SQ	0	0.59				0.70					0.66	0.69		0.47
Q-EQ-SQ	1	0.88	1.45	1.59	1.50	1.58	1.24	1.07	1.42	1.56	1.48	1.56	1.22	1.06
0-E0-S0	2	1.8	2.09	2.33	2.21	2.23	1.63	1.40	2.05	2.29	2.18	2.20	1.60	1.39
0-E0-S0	3	3.5	3.22	3.50	3.03	3.06	2.34	2.02	3.16	3.44	2.98	3.00	2.31	2.00
0-E0-S0	4	5.3	5.14	5.60	4.85	5.04	4.05	3.49	5.05	5.50	4.77	4.95	3.99	3.45
0-E0-S0	5	7.0	6.75 0.00	7.36	6.37 8.40	6.65	5.40	4.66	6.63	7.22	6.26 8.24	6.54 9.51	5.32	4.60
Q-EQ-SQ VALVE TYPE		11	9.00	9.81 BALANC	8.49 ED POR	8.65	6.75	5.82	8.84	9.63	8.34	8.51	6.65	5.75
BQ-EBQ-SBQ	AAA	0.70	0.72	0.80	0.75	0.82	0.67	0.58	0.71	0.78	0.74	0.80	0.66	0.57
BQ-EBQ-SBQ	AAA	1.2	1.45	1.59	1.50	1.58	1.24	1.07	1.42	1.56	1.48	1.56	1.22	1.06
BQ-EBQ-SBQ	A	3.5	3.21	3.59	3.41	3.70	3.03	2.61	3.15	3.53	3.35	3.63	2.99	2.58
BQ-EBQ-SBQ	B	7.0	5.95	6.48	5.61	5.69	4.41	3.80	5.84	6.36	5.51	5.60	4.34	3.76
BQ-EBQ-SBQ	C	11	9.00	9.81	8.49	8.65	6.75	5.82	8.84	9.63	8.34	8.51	6.65	5.75
	-		0.00	0.01	0.10	0.00	0.70	0.02	0.01	0.00	0.01	0.01	0.00	0.70

	LI	IQUID TEMPERATURE ENTERING TEV °C								
REFRIGERANT	-10°	0°	10°	20°	30°	40°	50°	60°		
	CORR	ECTIO	N FAC	TOR, C	FLIQU	ID TEN	NPERA	TURE		
404A	1.98	1.79	1.60	1.41	1.21	1.00	0.79	0.56		
507	1.92	1.74	1.56	1.37	1.19	1.00	0.79	0.54		

These factors include corrections for liquid refrigerant density and net refrigerating effect and are based on an evaporator temperature of -15°C. However, they may be used for any evaporator temperature from -15°C to 5°C since the variation in the actual factors across this range is insignificant.

EVAPORATOR		PRESSURE DROP ACROSS TEV (bar)									
TEMPERATURE	2	4	6	8	10	12	14	16			
°C	CO	RRECT	ION F	ACTOF	, CF P	RESSU	RE DR	OP			
5°	0.58	0.82	1.00	1.15	1.29	1.41	1.53	1.63			
-5° & -15°	0.50	0.71	0.87	1.00	1.12	1.22	1.32	1.41			
-20° & -30°	0.45	0.63	0.77	0.89	1.00	1.10	1.18	1.26			
-40°	0.41	0.58	0.71	0.82	0.91	1.00	1.08	1.15			

TEV Capacity = TEV Rating x CF Liquid Temperature x CF Pressure Drop — Example: Actual capacity of a nominal 1-1/2 ton R-404A Type FB valve at -5°C evaporator, 10 bar pressure drop across the TEV, and a 30°C liquid temperature entering the TEV = 4.91 (from rating chart) x 1.21 (CF liquid temperature) x 1.12 (CF pressure drop) = 6.65 kW.

410A

Air Conditioning and Heat Pump Applications

	-										
				REFRIGERANT							
			410A								
VALVET	WREA	NOMINAL CAPACITY	RECOMMENDED THERMOSTATIC CHARGE								
VALVET	YPES	GAPAGITY	ZGA								
			EVAPO	RATOR TEMPERAT	URE °C						
		kW	5°	-5°	-15°						
	BALA	NCED PORT THERMOSTATIC EXPANSION VALVES									
R-R		3.5	4.08	4.50	4.12						
R-R	C	5.3	7.14	7.88	7.21						
R-R	C	7.0	9.38	10.4	9.48						
R-R	C	11	13.1	14.4	13.2						
R-R	C	14	17.1	18.9	17.3						
R-R	C	18	20.4	22.5	20.6						
R-R	C	21	24.5	27.0	23.0						
R		28	32.6	36.0	33.0						
R		44	42.5	46.9	43.0						
R		53	49.4	54.4	49.9						
0		70	68.1	75.1	71.5						
0		88	81.7	90.1	85.8						
0		120	112	124	118						
0		180	170	188	179						
0		210	204	225	215						
VALVE TYPE	CARTRIDGE		ORT CARTRIDGE TH								
BQ-EBQ-SBQ	AAA	1.2	1.43	1.58	1.42						
BQ-EBQ-SBQ	AA	2.6	3.06	3.38	3.04						
BQ-EBQ-SBQ	A	5.3	6.53	7.20	6.49						
BQ-EBQ-SBQ	B	11 18	11.4	12.6	11.4						
BQ-EBQ-SBQ	BQ-EBQ-SBQ C		21.2	23.4	21.1						

	LIQU	LIQUID TEMPERATURE ENTERING TEV °C									
REFRIGERANT	20°	30°	40°	50°	60°						
	CORRECTION FACTOR, CF LIQUID TEMPERATURE										
410A	1.30	1.15	1.00	0.84	0.65						

EVAPORATOR	PRESSURE DROP ACROSS TEV (bar)									
TEMPERATURE	8	11	14	17	20					
°C	CORRE	CTION FA	CTOR, CF	PRESSUR	E DROP					
5°	0.85	1.00	1.13	1.24	1.35					
-5° & -15°	0.76	0.89	1.00	1.10	1.20					

These factors include corrections for liquid refrigerant density and net refrigerating effect and are based on an evaporator temperature of -15°C. However, they may be used for any evaporator temperature from -15°C to 5°C since the variation in the actual factors across this range is insignificant.

TEV Capacity = TEV Rating x CF Liquid Temperature x CF Pressure Drop — Example: Actual capacity of a nominal 4 ton R-410A Type RC valve at -15°C evaporator, 17 bar pressure drop across the TEV, and a 30°C liquid temperature entering the TEV = 17.3 (from rating chart) x 1.15 (CF liquid temperature) x 1.10 (CF pressure drop) = 21.9 kW.

REFRIGERANT DISTRIBUTORS & AUXILIARY SIDE CONNECTORS

1651

Side Connection distributors for heat pump, hot gas defrost, and hot gas bypass systems.

ASC

(Auxiliary Side Connectors) for hot gas defrost, hot gas bypass and heat pump systems.

The Sporlan Distributor is an efficient refrigerant distributing device that assures uniform feeding of refrigerant to all passes of a multi-circuited evaporator. It can be used with any conventional externally equalized thermostatic expansion valve. Auxiliary Side Connectors (ASC) permit the conversion of conventional Sporlan refrigerant distributors to hot gas bypass, hot gas defrost or heat pump service. Sporlan's distributors and auxiliary side connectors are suitable for use with R-410A.

Refrigerant Distributors

CONNECTION	TEV	DISTRIBUTOR	МА	XIMUM NUM	BER of CIRCUI	TS	NOZZLE	MATERIAL
SIZE	MODEL	ТҮРЕ	3/16	1/4	5/16	3/8	ТҮРЕ	WIATERIAL
		1603	6	4	_	—	PERM.	
1/2 SAE		1606	9	6	4	_	PERM.	
1/2 SAE	BQ, Q, R, RC	1605	6	4		_	L	
		1608	9	6	4	—	L	
1/2 ODM	EBQ, EQ, R, RC, S,	D260	6	4		—	L	
1/2 UDIVI	SBQ, SQ	D262	9	7	4	—	L	
		1620	6	4		—	J	#360 Brass
5/8 ODM	EQ, R, RC, S	1622	9	7	4	—	J	
7/8 ODM		1112	7	6	4	2	G	
	EBQ, EBS, EQ, O, S	1113	12	8	6	4	G	
1-1/8 ODM	EBS, 0, S	1115	15	10	9	6	E	
	ED3, U, 3	1116	20	15		—	E	
		1117	18	15	9	7	С	
1-3/8 ODM	EBS, 0, W	1126	24	18	15	12	С	#377 Brass
		1128	28	25	21	16	C	#311 DIASS
		1125	28	24	20	16	А	
1-5/8 ODM	0, W	1127	37	30	26	20	А	
		1143	40	36	30	24	А	#360 Brass
		1109	10	8	6	4	G	
Type H Valve	Н	1124	30	23	18	15	E	
		1192	11	10	6	6	G	6061-T6
		1121	34	24	20	16	C	#360 Brass
Type M/V Valve	M, V	1193	26	21	18	16	С	6061-T6

Side Connection Distributors

CONNECTION	TEV	DISTRIBUTOR	MAXIM	им ним	BER of CI	RCUITS	NOZZLE	SIDE	MATERIAL	
SIZE	MODEL	ТҮРЕ	3/16	1/4	5/16	3/8	ТҮРЕ	CONNECTION	WATCHIAL	
1/2 SAE	BQ, Q, R, RC	1650 (R)	7	5	—	—	PERM.	3/8 or 1/2 ODF		
5/8 ODM	EBQ, EQ, R, RC, S, SBQ	1651 (R)	7	5		—	J (R)	3/8 or 1/2 ODF		
7/8 ODM	EBQ, EBS, EQ, O, S	1653 (R)	12	9	6	4	G (R)	3/8 01 1/2 UDF	#200 Date -	
1-1/8 ODM	EBS, 0, S	1655 (R)	20	12	10	7	E (R)	1/2 or 5/8 ODF	#360 Brass	
1-3/8 ODM	EBS, 0, W	1657 (R)	26	18	14	11	C (R)	5/8 or 7/8 ODF		
1-5/8 ODM	0, W	1659 (R)	32	24	18	14	A (R)	7/8 or 1-1/8 ODF		

Auxiliary Side Connectors

	CONNE	CTION SIZES	- Inches	NOZZLE	USED with
ТҮРЕ	INLET ODM Solder	OUTLET ODF SOLDER	AUXILIARY ODF SOLDER	SIZE	DISTRIBUTOR TYPE
ASC-5-4	5/8	5/8	1/2	J	1620, 1622
ASC-7-4	7/8	7/8	1/2	G	1112, 1113
ASC-9-5	1-1/8	1-1/8	5/8	E	1115, 1116
ASC-11-7	1-3/8	1-3/8	7/8	С	1117, 1126, 1128
ASC-13-9	1-5/8	1-5/8	1-1/8	А	1125, 1127, 1143

Nomenclature/Ordering Instructions

To order an 1126 distributor with 16 - 1/4'' circuits and number 15 nozzle use the following nomenclature:

1126	_	16	_	1/4	_	15
Valve Type		Number of Circuits		Circuit Sizes		Nozzle Orifice Number

2-WAY SOLENOID VALVES 22, 134a, 404A, 407C, 409A, 410A, 507

6 Proven Benefits of Sporlan Solenoid Valves

- Can be mounted in a horizontal or vertical line.
- Molded coil for all sizes.
- Class "F" temperature rating Coil types MKC-1, OMKC-1, MKC-2 and OMKC-2.
- Extremely rugged, simple design few parts.
- "E" Series may be brazed without disassembly.
- **Tight closing through use of synthetic seating material.**

Sporlan Solenoid Valves are made in two general types, normally closed and normally open. The normally closed types may be further sub-divided into direct acting and pilot operated types.

All Sporlan solenoid valves are designed for liquid, suction and discharge gas applications.

Liquid Capacities – kW

'E" SERIES VALVES

E3 E5-HP

E6-HP

E9-HP

E10-HP

E14-HP

E19-HP

E25-HP

E35-HP

E42-HP

0.07

5.37

9.63

15.7

21.5

39.5

46.5

79.6

129

246

0.14

6.44

11.5

18.7

25.6

36.4

55.7

95.2

157

294

Most Sporlan Solenoid Valves are Listed by Underwriters' Laboratories, Inc. – Guide No. Y10Z - File No. MH4576 and Canadian Standards Association - Guide 440-A-0, Class 3221, File 19953 and CE provisions of the LVD 73/23/EEC and PED 97/23/EC.

TYPE	NUMBER							kW of RI	FRIGER	ATION**						
"E"	"A" & "B"			22					134a					404A		
SERIES	SERIES							PRESS	JRE DRO	P – bar*						
VALVES	VALVES	0.07	0.14	0.21	0.28	0.35	0.07	0.14	0.21	0.28	0.35	0.07	0.14	0.21	0.28	0.35
E3	A3	3.19	4.61	5.71	6.65	7.49	2.98	4.30	5.33	6.21	6.99	2.10	3.03	3.75	4.37	4.92
E5	—	5.69	8.10	9.96	11.5	12.9	5.31	7.56	9.29	10.8	12.1	3.76	5.35	6.57	7.61	8.52
E6	B6	10.2	14.3	17.5	20.2	22.5	9.50	13.4	16.3	18.8	21.0	6.74	9.49	11.6	13.3	14.9
E9	B9	16.6	23.4	28.6	33.0	36.9	15.5	21.8	26.7	30.8	34.4	11.0	15.5	18.9	21.8	24.4
E10	B10	22.7	32.1	39.3	45.4	50.7	21.2	30.0	36.7	42.3	47.3	15.0	21.2	26.0	30.0	33.5
E14	B14	32.3	45.6	55.8	64.4	71.9	30.1	42.5	52.1	60.1	67.1	21.4	30.2	36.9	42.6	47.6
E19	B19	49.3	70.0	85.8	99.2	111	46.0	65.3	80.1	92.6	104	32.6	46.2	56.7	65.5	73.3
E25	B25	84.3	119	147	169	189	78.7	111	137	158	177	55.7	78.9	96.8	112	125
E35	—	118	166	204	236	263	110	155	190	220	246	77.7	110	135	156	174
E42	—	260	368	451	520	582	243	343	420	485	543	172	243	298	344	384

	UMBER				kW	of REFRI	IGERATION**					
"E"	"A" & "B"			407C					507			
SERIES	SERIES VALVES	PRESSURE DROP – bar*										
VALVES		0.07	0.14	0.21	0.28	0.35	0.07	0.14	0.21	0.28	0.35	
E3	A3	2.92	4.21	5.22	6.08	6.85	2.05	2.97	3.68	4.29	4.82	
E5	_	5.22	7.43	9.13	10.6	11.8	3.68	5.24	6.44	7.45	8.35	
E6	B6	9.36	13.2	16.1	18.5	20.7	6.60	9.28	11.3	13.1	14.6	
E9	B9	15.3	21.5	26.3	30.3	33.9	10.8	15.2	18.5	21.4	23.9	
E10	B10	20.9	29.5	36.1	41.7	46.6	14.7	20.8	25.5	29.4	32.8	
E14	B14	29.7	41.9	51.2	59.1	66.1	20.9	29.5	36.1	41.7	46.6	
E19	B19	45.3	64.2	78.7	91.0	102	31.9	45.2	55.5	64.2	71.8	
E25	B25	77.4	110	134	155	174	54.6	77.3	94.8	110	123	
E35	—	108	153	187	216	242	76.1	108	132	152	170	
E42	_	239	338	414	478	534	168	238	292	337	376	
TYPE	TYPE NUMBER kW of REFRIGERATION**				:					, except Typ r and 38°C li		

0.28

11.3

19.7

32.3

44.3

62.9

97.0

165

286

508

0.35

13.0

22.7

37.2

51.2

72.6

112

191

335

587

410A

PRESSURE DROP – bar*

0.21

9.16

16.1

26.4

36.2

51.4

79.0

135

230

415

*Do not use below 0.07 bar pressure drop, except Types E3 and A3 valves. **Capacities are based on 5°C evaporator and 38°C liquid.

Valve types whether Normally Closed or Normally Open have the same capacities, i.e., B10 or OB10, E10 or 0E10.

For complete information on Solenoid valves for brine applications, consult your nearest Sporlan Wholesaler or email europecold@parker.com and request Bulletin 30-10.

2-WAY SOLENOID VALVES

Built-In Check Valve Series

A solenoid valve with a built-in check valve is designed to replace a liquid line solenoid valve in parallel with a check valve for reverse flow. This valve may be applied in the liquid line of a supermarket case for positive shutoff during pumpdown control, while allowing full flow in the reverse

direction during reverse gas defrost. It may also be used in the liquid line of a heat pump to prevent migration of refrigerant to the outdoor unit during the heating mode, while allowing full flow in the reverse direction during the cooling mode.

Note: This valve will not close in the reverse flow/cooling mode.

Maximum Rated Pressures — Valve Type E42 Series – 31 bar All other valve types – 34.5 bar

Electrical Specifications — Standard Coil Ratings – MKC-1, OMKC-1, MKC-2 and OMKC-2: 24/50-60, 120/50-60, 208-240/50-60. Dual Voltage 4 Wire Coils – 120-208-240/50-60, slight additional cost.

Available with junction box or conduit boss at no extra charge. For other voltages and cycles consult Sporlan.

Interchangeability of Coils — One size coil MKC-1 for Types A3, E3, B6, MB6, E5, E6, ME6, E35 and ME35 series. One size MKC-2 for types B9, MB9, E9 and ME9 series through the E42 and ME42 series.

OMKC-1 and OMKC-2 Coil Assemblies are for use on Normally Open valves.

Specifications for Reverse Refrigeration Flow, Liquid Line Capacity – kW**

VALVE TYPE	CONNECTIONS Inches		22 bar		34a bar E	04A bar ATOR °	R-407C R-507 0.21 bar 0.21 bar R °C				
		5	-20	5	-20	5	-20	5	-20	5	-20
C(M)B9, C(M)E9	3/8, 1/2 ODF, 3/8 SAE	23.2	21.8	17.9	16.2	—	13.7	21.5	19.7	—	13.4
C(M)B10, C(M)E10	1/2 SAE, 1/2, 5/8 ODF	28.5	26.7	21.8	19.7		16.9	26.0	23.9	—	16.5
C(M)B14, C(M)E14	5/8 ODF	45.4	42.9	35.9	32.7	—	27.1	42.2	38.7	—	26.7
C(M)B19, C(M)E19+	5/8, 7/8 ODF	32.7	31.0	21.8	19.7	—	19.0	28.8	26.4	—	17.9

** Valve sizing should be based on expected reverse liquid flow condensing capabilities of the evaporator(s) being defrosted.
Due to flow restrictions, C(M)E19 model capacity does not surpass C(M)E14 models until pressure drop exceeds 0.70 bar.

See page 25 for Forward Refrigerant Flow. Liquid capacities shown in the above table are based on 38°C liquid temperature entering the valves.

Specifications

"E" SERIE	S EXTENDED CO	NNECTIONS	"A" 8	& "B" SERIES VA	LVES		DODT		
WITHOUT LIFT S		WITH MANUAL LIFT STEM	WITHOUT LIFT S	MANUAL STEM	WITH MANUAL LIFT STEM	CONNECTIONS Inches	PORT SIZE mm	MOPD bar AC	WATTS
Normally Closed	Normally Open	Normally Closed	Normally Closed	Normally Open	Normally Closed				
_		—	A3P1		—	3/8 NPT Female			
	—	—	A3F1	_	—	1/4 SAE Flare	2.6	20.5	10
E3S120	—	—	A3S1		—	1/4 ODF Solder	2.0	20.5	10
E3S130	—	—	A3S1		—	3/8 ODF Solder			
E5S120	—	—	—		—	1/4 ODF Solder	3.8	20.5	10
E5S130(-HP)	—	—	—		—	3/8 ODF Solder	5.0	20.5	10
—	—	—	B6P1	—	MB6P1	3/8 NPT Female			
_	_	_	B6F1	_	MB6F1	3/8 SAE Flare	4.8	20.5	10
E6S130(-HP)	—	ME6S130(-HP)	B6S1	—	MB6S1	3/8 ODF Solder	4.0	20.5	10
E6S140	—	ME6S140 (-HP)	B6S1	—	MB6S1	1/2 ODF Solder			
_	—	—	B9P2	0B9P2	MB9P2	3/8 NPT Female			
_		_	B9F2	OB9F2	MB9F2	3/8 SAE Flare	71	*20.5	15
E9S230	0E9S230	ME9S230			_	3/8 ODF Solder	7.1	°20.5	15
E9S240(-HP)	0E9S240	ME9S240 (-HP)	B9S2	0B9S2	MB9S2	1/2 ODF Solder			
_	_	—	B10F2	—	MB10F2	1/2 SAE Flare			
E10S240(-HP)	0E10S240	ME10S240		—	_	1/2 ODF Solder	7.9	*20.5	15
E10S250	0E10S250	ME10S250	B10S2	_	MB10S2	5/8 ODF Solder			
_		_	B14P2	0B14P2	MB14P2	1/2 NPT Female	11.1	*20.5	15
E14S250(-HP)	0E14S250	ME14S250 (-HP)	B14S2	0B14S2	MB14S2	5/8 ODF Solder	11.1	^ZU.5	15
_		_	B19P2	0B19P2	—	3/4 NPT Female			
E19S250	0E19S250	ME19S250	B19S2	0B19S2	MB19S2	5/8 ODF Solder	15.1	*20.5	15
E19S270(-HP)	0E19S270	ME19S270(-HP)	B19S2	0B19S2	MB19S2	7/8 ODF Solder			
_	_	_	B25P2		MB25P2	1 NPT Female			
E25S270(-HP)	0E25S270	ME25S270	B25S2	0B25S2	MB25S2	7/8 ODF Solder	19.8	*20.5	15
E25S290(-HP)	0E25S290	ME25S290 (-HP)	B25S2	0B25S2	MB25S2	1-1/8 ODF Solder			
E35S190	0E35S190	ME35S190 (-HP)	_	_	_	1-1/8 ODF Solder			
E35S1110	0E35S1110	ME35S1110 (-HP)	_	_	_	1-3/8 ODF Solder	25.4	20.5	10
_	_		_	—	_	1-5/8 ODF Solder			
E42S2130(-HP)	0E42S2130	ME42S2130	_	_	_	1-5/8 ODF Solder		*20 F	15
E42S2170	0E42S2170	ME42S2170	_	_	_	2-1/8 ODF Solder	33.3	*20.5	15

*All normally open valves are rated at 19 bar, except OE35 which is rated at 20.5 bar.

For complete information consult your nearest Sporlan Wholesaler, or email europecold@parker.com and request Bulletin 30-10.

22, 134a, 404A, 407C, 507

2-WAY SOLENOID VALVES

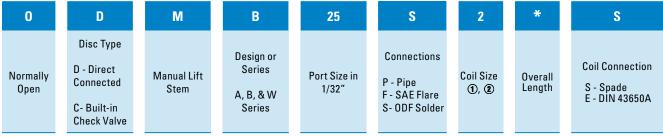
22, 134a, 404A, 407C, 507

E Series – Valve Nomenclature/Ordering Instructions

М	E	10	S	2	5	0	S	HP
Manual Lift Stem	Design Series	Port Size in 1/32″	Connections Solder	Coil Size ①, ②	Connection Size in 1/8″	*Connections 0 - ODF x ODF 1 - ODF x ODM 2 - ODM x ODF 3 - ODM x ODM	Coil Connection S - Spade E - DIN 43650A	for R-41 only

Type "E" series is identified by an expanded nomenclature. The system of valve identity based on port size. In addition, the "E" series identifies the connection size and type. The advantage of the "E" series nomenclature system is that it allows ease in valve identification of the standard line and can provide considerable information about special valves supplied to manufacturers.

1	The MKC-1, OMKC-1, MKC-2 and OMKC-2 are fungus
	proof and meet MIL-I-631C.


(2) The standard MKC-1 and MKC-2 are class "F" rated.

 Standard connections are ODF inlet x ODF outlet on "E" Series valves. Minimum quantities may be required for other connections.

10A

A, B and W Series – Valve Nomenclature/Ordering Instructions

The above prefixes may be added to basic valve type number (B25S2) to request special features.

Normally open valves available in B9, E9 through E42 series only, and require OMKC-2 Coil Assembly. Add prefix D for direct connected assembly in MA32 and MA17A3 series. **Example DMA32P3**.

Application

Compressor Capacity Reduction Service

Sporlan Solenoid Valves may be used in conjunction with Sporlan Discharge Bypass Valves for capacity reduction service. For capacity information and further details on the Discharge Bypass Valves see page 44.

Filter-Driers are Essential

Dirt and other system contaminants present a problem for refrigeration and air conditioning controls. Since pilot operated solenoid valves operate with rather close tolerances, system cleanliness is imperative. The Sporlan Catch-All[®] Filter-Drier filters out minute particles of dirt and other foreign matter, thus protecting the valve.

Sporlan recommends using a Catch-All[®] Filter-Drier ahead of every solenoid valve on all refrigeration and air conditioning applications. Contact Sporlan before adding a Catch-All[®] Filter-Drier in the discharge line.

Transformer Selection for Low-Voltage Control Systems

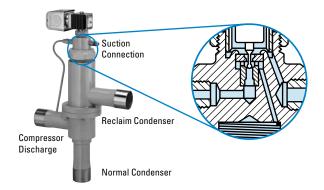
Many systems utilize low voltage controls, requiring the use of a transformer for voltage reduction, normally to 24 volts. The selection of a transformer is not accomplished by merely selecting one that has the proper voltage requirements. The volt-ampere (VA) rating is equally important. To determine the VA requirement for a specific solenoid valve, refer to the chart below. It should be noted, that insufficient transformer capacity will result in reduced operating power or lowering of the MOPD value.

If more than one solenoid valve and/or other accessories are operated from the same transformer, then the transformer VA rating must be determined by adding the individual accessories' VA requirements.

Fusing

Sporlan Solenoid Valves are not supplied with fuses. Fusing should be according to local codes. We recommend fusing the hot leg of the valve wiring with fast acting fuses and the valve should be grounded either through the fluid piping or the electrical conduit.

COIL Kit	24 VOLTS/ 50-60 CYCLES CURRENT-AMPERES INRUSH HOLDING		50-60 (OLTS/ CYCLES AMPERES HOLDING	50-60 C	OLTS/ CYCLES AMPERES HOLDING	TRANSFORMER RATING VOLTS-AMPERES FOR 100% OF RATED MOPD OF VALVE		
МКС-1 омкс-1	1.9	0.63	0.39	0.14	0.19	0.09	60		
MKC-2 0MKC-2	3.1	1.4	0.60	0.26	0.31	0.13	100		


All current values are based on 60 cycles.

Volt-ampere ratings are based on inrush currents

Above values are based on the most severe conditions.

3-WAY HEAT RECLAIM VALVES

Sporlan Heat Reclaim Valves are tight synthetic seating three way valves designed specifically to divert hot gas from the normal to auxiliary condenser.

22, 134a, 404A, 407C, 409A, 410A, 507

is open, the cavity above the piston is open to suction. Pump out of the reclaim condenser is controlled by the bleed rate through the piston. After the reclaim condenser has been pumped out, and the valve continues to operate in the normal condenser mode, **all flow ceases**, thus eliminating high to low side bleed and the resulting capacity loss.

"C" Type

Normal (Outdoor) Condenser – De-energized – With the pilot valve de-energized, high side pressure is prevented from entering cavity above the piston-seat assembly. At the same time the upper pilot port is opened to suction pressure. The resulting pressure differential across the piston moves the piston-seat assembly to close the reclaim (upper) main port. The non bleed piston prevents high to low side bleed with the system operating in the normal condenser mode.

"B" and "C" Type

Reclaim (Reheat) Condenser – Energized – When the pilot valve is energized, high side pressure is permitted to flow thru the lower pilot port. At the same time the upper pilot port is closed to suction. High side pressure on top of the piston moves the piston-seat assembly to close the normal condenser port and open the reclaim (upper) main port. With the upper pilot port closed there is no high to low side bleed loss with the system operating in the reclaim mode.

Operation "B" Type

Normal (Outdoor) Condenser – De-energized – With the pilot valve de-energized, high side pressure is prevented from entering the cavity above the piston-seat assembly. At the same time the upper pilot port is opened to suction pressure. The resulting pressure differential across the piston moves the piston-seat assembly to close the reclaim (upper) main port. When the upper pilot port

Capacity – kW

Capacities are based on 38°C condensing temperature isentropic compression plus 28°C, evaporator temperature as shown plus 14°C superheat suction gas.

B		REFRIGERANT																						
AT0 °C				2	2							13	4a							40	4 A			
NP.											PRES	SURE	DROP	– bar										
APOR/ TEMP.		0.	14			0.	28			0.	14			0.:	28			0.	14			0.	28	
B	B5D	8D	12D	16D	B5D	8D	12D	16D	B5D	8D	12D	16D	B5D	8D	12D	16D	B5D	8D	12D	16D	B5D	8D	12D	16D
5	16.8	35.9	103	249	23.4	50.3	149	357	14.1	29.9	85.5	206	19.5	41.9	123	295	15.0	32.1	93.9	226	20.8	44.9	135	324
0	16.6	35.3	102	245	23.0	49.5	146	351	13.8	29.3	83.7	202	19.1	41.0	120	289	14.6	31.3	91.7	220	20.3	43.9	132	316
-5	16.3	34.7	99.9	240	22.6	48.6	144	345	13.5	28.6	81.8	197	18.7	40.1	118	283	14.2	30.5	89.3	215	19.7	42.8	128	308
-10	16.0	34.1	98.1	236	22.2	47.7	141	339	13.2	28.0	79.9	192	18.2	39.2	115	276	13.8	29.7	86.9	209	19.2	41.6	125	300
-15	15.7	33.4	96.2	231	21.8	46.8	138	332	12.8	27.3	77.9	188	17.8	38.2	112	269	13.5	28.9	84.4	203	18.7	40.4	121	291
-20	15.4	32.8	94.2	227	21.3	45.9	135	325	12.5	26.6	75.9	183	17.4	37.3	109	262	13.0	28.0	81.8	197	18.1	39.2	118	282
-25	15.1	32.1	92.2	222	20.9	44.9	133	318	12.2	25.9	73.9	178	16.9	36.3	106	255	12.6	27.1	79.2	190	17.5	37.9	114	273
-30	14.7	31.4	90.1	217	20.4	43.9	130	311	—	—	—	—	—	—	—	—	12.2	26.2	76.5	184	16.9	36.6	110	264
-35	14.4	30.7	88.0	212	20.0	42.9	127	304	—	—	—	—	—	—	—	—	11.8	25.2	73.7	177	16.3	35.3	106	254
-40	14.1	29.9	85.8	207	19.5	41.9	123	296	—	—	—	—	—	—	—	—	11.3	24.3	70.9	170	15.7	34.0	102	245

E S		REFRIGERANT																						
AT C				40	7C					409A					507									
NP.											PRES	SURE	DROP	– bar										
VAPORATO		0.	14			0.	28			0.	14			0.3	28			0.	14			0.2	28	
Ш.	B5D	8D	12D	16D	B5D	8D	12D	16D	B5D	8D	12D	16D	B5D	8D	12D	16D	B5D	8D	12D	16D	B5D	8D	12D	16D
5	17.6	37.7	109	263	24.5	52.8	157	377	15.1	32.2	92.2	222	21.0	45.1	133	318	14.5	31.1	91.2	219	20.1	43.6	131	314
0	17.3	36.9	107	257	24.0	51.7	154	369	14.8	31.5	90.3	217	20.6	44.2	130	312	14.1	30.4	89.0	214	19.6	42.5	128	307
-5	16.9	36.1	105	252	23.4	50.6	150	361	14.5	30.9	88.4	213	20.1	43.2	127	305	13.8	29.6	86.7	208	19.1	41.4	125	299
-10	16.5	35.3	102	246	22.9	49.4	147	352	14.2	30.2	86.4	208	19.7	42.3	124	298	13.4	28.8	84.4	203	18.6	40.3	121	291
-15	16.1	34.4	99.6	240	22.4	48.2	143	344	13.9	29.5	84.4	203	19.2	41.3	121	291	13.0	28.0	82.0	197	18.1	39.2	118	283
-20	15.7	33.6	97.1	233	21.8	47.0	140	335	13.5	28.8	82.4	198	18.8	40.3	118	284	12.7	27.2	79.6	191	17.6	38.0	114	274
-25	15.3	32.7	94.4	227	21.2	45.7	136	326	13.2	28.1	80.3	193	18.3	39.4	115	277	12.3	26.3	77.1	185	17.0	36.8	111	266
-30	14.9	31.8	91.8	221	20.6	44.5	132	317	—	—	—	—	—	—	—	—	11.9	25.5	74.5	179	16.5	35.6	107	257
-35	14.4	30.8	89.1	214	20.0	43.2	128	307	—	—	—	—	—	—	—	—	11.5	24.6	71.9	173	15.9	34.4	103	248
-40	—	—	—	—	—	—	—	—	—	—	—		—	—	—	—	11.0	23.7	69.3	167	15.3	33.2	99.7	239

22, 134a, 404A, 407C, 409A, 410A, 507

3-WAY HEAT RECLAIM VALVES

Specifications – For Re	errigerants z.	2, 134	a, 4047	4, 4076, 40	9A, 507	
	Mk	(C-1 C(DIL			
туре	CONNECTION ODF SOLDER	PORT		MAXIMUM RATED	STANDARD C Ratings	OIL
ITTE	Inches	SIZE	AC	PRESSURE bar	VOLTS/CYCLES	WATTS
5BD5B, 5BD5C	5/8	5/8				
8D7B, 8D7C	7/8	3/4				
8D9B, 8D9C	1-1/8	3/4			24/50-60	
12D11B, 12D11C	1-3/8		20.6	31.0	120/50-60 208-240/50-60	10
12D13B, 12D13C	1-5/8	1-1/4			120-208-240/50-60	
12D17B	2-1/8				120-200-240/50-0	
16D17B, 16D17C	2-1/8	2				

Specifications - For Refrigerants 22, 134a, 404A, 407C, 409A, 507

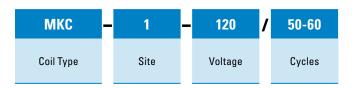
Available with junction box or conduit boss at no extra charge. For other voltages and cycles, consult your nearest Sporlan Wholesaler or email europecold@parker.com

Selection

- 1. For a given refrigerant, select a valve having a port size with capacity most closely matching the evaporator maximum load requirements in tons at the design evaporator temperature. Take into account the allowable pressure drop across the valve port.
- 2. Select the proper coil assembly for the valve type and match the voltage requirements. All AC voltage options are available. For voltages not listed in coil specification, consult your nearest Sporlan Wholesaler or email europecold@parker.com and request Bulletin 30-10.

Valve Nomenclature/Ordering Instructions

When ordering complete valves, specify Valve Type, Voltage and Cycles. When ordering Valve Body ONLY, specify Valve Type. When ordering Coil Assembly ONLY, specify Coil Type, Voltage and Cycles. Example: MKC-1 120/50-60; MKC-2 120/50-60.


Specifications – For Refrigerant 410A

Heat Reclaim Systems with Head Pressure Control with Split **Condenser Control with Integral Check Valve** When employing heat reclaim on a refrigeration system, the addi-

tion of head pressure control is important not only to maintain liquid pressure at the expansion valve inlet, but also to assure availability of quality hot gas at the reclaim heat exchanger.

Split condenser valves are important to minimize the required refrigerant charge for wintertime operation.

3-Way heat reclaim valves with Integral check valves are important to minimize installation costs.

VALVE SERIES	ТҮРЕ	STANDARD CONNECTION	PORT SIZE	MOPD	MRP	STANDARD C	OIL RATINGS	;
JEIIIEJ		Inches	mm	bar*	bar**	VOLTS/CYCLES	WATTS	COIL
B5D	B5D5B	5/8	16	27.6	44.8	04/50.00		
000	B5D5C	5/0	10	27.0	44.0	24/50-60		
	8D7B-HP	7/0				120/50-60 208-240/50-60	10	MKC-1
	8D7C-HP	7/8	19	27.6	44.8	120-208-240/50-60		
8D9B-HP						120 200 210,00 00		

* MOPD stands for Maximum Operating Pressure Differential.

** MRP stands for Maximum Rated Pressure.

Available with conduit boss, junction box, or DIN at no extra charge.

Dual voltage 4-wire coils, 120-208-240/50-60 are available at slight additional cost. For other voltages and cycles, consult your nearest Sporlan Wholesaler or email europecold@parker.com

Evaporator Capacities kW - bar - °C

ТУРЕ	EVAPORATOR	PRESSURE	DROP – bar
ITE	TEMPERATURE °C	0.15	0.3
	4	20.5	28.4
B5D	0	20.2	28.0
DOD	-5	19.9	27.6
	-10	19.5	27.1
	4	44.0	61.5
0 D	0	43.3	60.7
8D	-5	42.6	59.6
	-10	41.8	58.5

Capacities are based on 38°C condensing temperature isentropic compression plus 28°C, evaporator temperature as shown plus 14°C superheat suction gas. For capacities at other conditions, use the Sporlan Selection Program or contact europecold@parker.com. All capacity ratings are in accordance with ARI Standard No. 760-80.

10G79B, 10G711B and 10G711C HOT GAS DEFROST 22, 134a, 404A, 507

Application

Hot gas defrost valves are utilized in systems in which one or more compressors provide refrigeration to multiple refrigerated cases, both medium and low temperature. The 3-way valves are used to control the flow of gas off a discharge header to the various cases (defrost) or suction gas from the cases to the suction header (refrigeration). The direction of flow

is dependent upon whether the pilot valve coil is energized or deenergized. These 3-way valves are used for gas defrost only.

When the coil is de-energized, the valve allows the flow of refrigerant in the normal direction for refrigeration. When the valve is energized the piston and seat assembly shifts to close the suction port and open the discharge gas port, to allow hot gas to flow from the discharge header through the valve to the evaporator outlet.

Due to the fact that when de-energized the valves remain closed to the hot gas connection, these can only be applied off a discharge header and not in the main discharge line.

Installation and Service

The 10G79B, 10G711B and 10G711C may be installed either upright or on its side. However, it should not be mounted with the coil housing below the valve body. The valve can be soldered in place without disassembly, but the body must be kept cool to avoid damage to the Nylatron synthetic seating material. Body and connections should be wrapped in a wet cloth. The valves may be easily disassembled without unsweating connections.

Specifications

ТҮРЕ	CONN	ECTIONS ODF S Inches	OLDER	MOPD* AC	MRP** bar	STANDARD COIL RATINGS					
	DISCHARGE	SUCTION	EVAPORATOR	bar	Uai	VOLTS/CYCLES	WATTS	COIL			
10G79B		1-1/8	1-1/8			24/50-60					
10G711B	7/8	7/8		20.6	34.4	120/50-60 208-240/50-60	10	MKC-1			
10G711C		1-3/8	1-3/8			120-208-240/50-60					

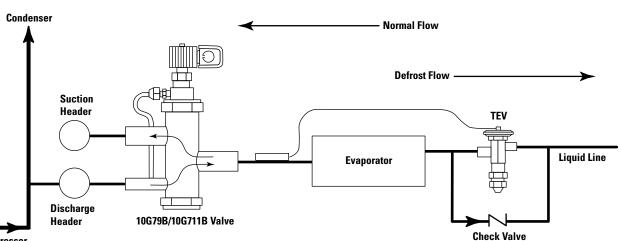
* MOPD stands for Maximum Operating Pressure Differential.

** MRP stands for Maximum Rated Pressure Not available for R-410A.

Available with conduit boss, junction box, or DIN at no extra charge. Dual voltage 4-wire coils, 120-208-240/50-60 are available at slight additional cost.

For other voltages and cycles, consult your nearest Sporlan Wholesaler or email europecold@parker.com

Evaporator Capacities kW - bar - °C


EVAPORATOR	PRESSURE DROP ACROSS THE VALVE ΔP – bar													
TEMPERATURE		0.	03			0.07								
°C	22	134a	404A	507	22	134a	404A	507						
-5	19.6	14.7	16.5	16.2	29.5	22.1	24.8	24.3						
-10	17.7	13.0	14.7	14.4	26.6	19.6	22.1	21.7						
-15	15.9	11.5	13.0	12.8	23.9	17.3	19.6	19.3						
-20	14.3	10.1	11.5	11.3	21.5	15.2	17.3	17.0						
-25	12.7	8.87	10.1	9.98	19.2	13.3	15.2	15.0						
-30	11.3	7.72	8.87	8.74	17.1	11.6	13.3	13.2						
-35	10.0	6.69	7.72	7.62	15.1	10.1	11.6	11.5						
-40	8.83	5.76	6.68	6.60	13.3	8.66	10.0	9.93						

Capacities are based on 38°C condensing temperature isentropic compression plus 28°C, evaporator temperature as shown plus 14°C superheat suction gas. For capacities at other conditions, use the Sporlan Selection Program or email europecold@parker.com. All capacity ratings are in accordance with ARI Standard No. 760-80

Valve Nomenclature/Ordering Instructions

When ordering complete valves, specify Valve Type, Voltage and Cycles. When ordering Valve Body ONLY, specify Valve Type. When ordering Coil Assembly ONLY, specify Coil Type, Voltage and Cycles. Example: MKC-1 120/50-60.

МКС	-	1	_	120	/	50-60
Coil Type		Size		Voltage		Cycles

22, 134a, 404A, 407C, 409A, 410A, 507

The universal acceptance of the **Catch-All® Filter-Drier** is due to its unique molded porous core, consisting of a blend of highly effective desiccants. The quality features built into it assure years of service on any refrigeration system.

MOISTURE – The Catch-All Filter-Drier removes moisture from the refrigerant by adsorbing and retaining it deep within the desiccant granules. The blend of desiccants used in the Catch-All Filter-Drier are specially formulated for exceptional water removal. FOREIGN MATTER – The Catch-All Filter-Drier will filter out scale, solder particles, carbon, sludge, dirt or any other foreign matter with negligible pressure drop. Fine particles that would go through an ordinary strainer are removed down to a minimum size in one pass filtration. The large filtering area of the Catch-All Filter-Drier core permits it to collect a large amount of dirt without plug up.

ACID – The **Catch-All Filter-Drier** is unexcelled in acid removal ability. The hydrochloric, hydrofluoric, and various organic acids

are adsorbed and held by the desiccant in a manner similar to the adsorption of moisture. Tests have demonstrated that the **Catch-All Filter-Drier** has superior acid removal ability when compared to competitive driers. This ability, along with its excellent ability to clean up the oil, is responsible for the excellent field performance in cleaning up severely contaminated systems.

OIL SLUDGE AND VARNISH – Even the best refrigeration oils break down to produce varnish, sludge and organic acids. Only the **Catch-All Filter-Drier** is capable of removing these products of oil decomposition.

SPECIAL APPLICATIONS – A special "HH" core **Catch-All Filter-Drier** is available to remove wax which frequently causes difficulty on low temperature refrigeration systems. For cap tube systems, use the C-032-CAP or C-032-CAP-T Catch-All which has fittings suitable for attaching to any size capillary tube. *Remember...It's the CORE that counts!*

Sealed Type – Liquid Line and Suction Line Specifications kW - bar - °C

"C" SERIE <u>s Lic</u>	DUID LINE TYPE	SUCTION LINE Type	CONNECTION SIZE	VOLUME of DESICCANT		L LENGTH	SOLDER SOCKET DEPTH	DIAMETER of BODY
SAE FLARE	ODF SOLDER	ODF SOLDER	Inches	cm3		ODF SOLDER	mm	mm
C-032	C-032-S	ODI SOLDEN	1/4	onio	106	97	10	
	C-032-CAP C-032-CAP-T		Extended 1/4 Male			148		
C-032-F	_	—	1/4 Male - Inlet 1/4 Female - Outlet	49	97			44
C-032-FM	—	—	1/4 Female - Inlet 1/4 Male - Outlet		97		—	
C-033	C-033-S	_	3/8		119	99	11	
C-052	C-052-S C-0525-S	—	1/4 5/16		121	106 111	10 11	
C-052-F	_	_	1/4 Male - Inlet 1/4 Female - Outlet	82	106		_	62
C-052-FM	_	_	1/4 Male - Inlet 1/4 Female - Outlet		106		_	
C-053	C-053-S	—	3/8		132	109	11	
C-082	C-082-S	—	1/4		143	130	10	
	C-0825-S		5/16	147		135	11	67
C-083	C-083-S	C-083-S-T-HH C-084-S-T-HH	3/8		154	133 138	11 13	
C-084	C-084-S	C-084-2-1-HH	1/2		160		13	
C-162	C-162-S C-1625-S	—	1/4 5/16		159	146 151	10 11	
C-163	C-163-S		3/8		171	149	11	
C-164	C-164-S	C-164-S-T-HH	1/2	262	176	152	13	76
C-165	C-165-S	C-165-S-T-HH	5/8	202	184	160	16	
_	_	C-166-S-T-HH	3/4		_	171	16	
_	C-167-S	C-167-S-T-HH	7/8		—	176	19	
C-303	C-303-S	_	3/8		246	226	11	
C-304	C-304-S		1/2		251	229	13	
C-305	C-305-S	C-305-S-T-HH	5/8	492	259	235	16	76
—	C-306-S	C-306-S-T-HH	3/4	452	—	245	16	70
_	C-307-S	C-307-S-T-HH	7/8		—	249	19	
	C-309-S	C-309-S-T-HH	1-1/8			248	24	
C-413	C-414-S	_	3/8		243	220	 12	
C-414 C-415	C-414-S C-415-S	_	1/2 5/8	672	252 260	230 237	13 16	89
G-415	C-415-S C-417-S	 С-417-S-T-НН	5/8 7/8	0/2	260	237	16	03
_	C-419-S	C-419-S-T-HH	1-1/8		_	245	24	
		C-437-S-T-HH	7/8			263	19	
		C-439-S-T-HH	1-1/8	707		273	24	101
_	_	C-4311-S-T-HH	1-3/8	787	—	278	25	121
		C-4313-S-T-HH	1-5/8			278	27	
	C-607-S	C-607-S-T-HH	7/8	002		406	19	76
_	C-609-S	C-609-S-T-HH	1-1/8	983		406	24	76
		C-144-S-TT-HH	1/2			105	13	
		C-145-S-TT-HH	5/8			111	16	
COMPA	CT STYLE	C-146-S-TT-HH	3/4	229	—	123	18	113
		C-147-S-TT-HH	7/8			126	19	
		C-149-S-TT-HH	1-1/8			125	24	

UL and UL_C Listed – Guide SMGT-File No. SA-1756A & B. Maximum Rated Pressure of 44.8 bar, except for the C-140 Series rated at 31 bar and the C-430 Series rated at 34.5 bar.

Page 32 - CATALOG 301

THE PERFECT FILTER-DRIER

22, 134a, 404A, 407C, 409A, 410A, 507

Replaceable Core Type

ODF Solder Connections

The rugged construction of the Replaceable Core Catch-All has proven itself in the field for many years. The design features include:

- 1. The famous **molded porous core** for maximum contaminant removal. The core cannot swell, powder or pack assuring ease of installation and removal.
- 2. The **bolt and nut attachment** of the end plate provides simple trouble-free installation.

RCW-48

RC-4864-GL

RCW-100

- **3.** The **internal** construction gives a one piece assembly and assures proper core alignment.
- **4.** A **complete line** of fitting sizes all with copper fittings.
- 5. No plastic parts are used all internal parts are plated steel.
- 6. A corrosion resistant powder paint protects the exterior of the shell.

C-969-G

Specifications

ТҮРЕ	CONNECTIONS ODF SOLDER Inches	OPTIONAL SECONDARY FILTER*	NUMBER of CORES or FILTER ELEMENTS	CORE PART NUMBER	VOLUME of DESICCANT cm ³	FILTER ELEMENT PART NUMBER	MOUNTING BRACKETS	OVERALL LENGTH mm
C-R424-G C-R425-G C-R427-G	1/2 5/8 7/8	_	1	RCW-42	688	—	A-175-1	229 230 240
C-485-G C-487-G C-489-G C-4811-G C-4813-G	5/8 7/8 1-1/8 1-3/8 1-5/8	FS-480	1		787	RPE-48-BD	A-685	232 236 241 244 244
C-967-G C-969-G C-9611-G C-9613-G	7/8 1-1/8 1-3/8 1-5/8	FS-960	2	RC-4864, RC-48GL, RCW-48, or	1573	RPE-48-BD	A-685	377 382 385 385
C-1449-G C-14411-G C-14413-G	1-1/8 1-3/8 1-5/8	FS-1440	3	RC-4864-HH	2360	RPE-48-BD	A-685	523 525 525
C-19211-G C-19213-G C-19217-G	1-3/8 1-5/8 2-1/8	FS-19200	4		3146	RPE-48-BD	A-685	666 666 666
C-30013-G C-30017-G	1-5/8 2-1/8	_	3	DOM: 400	4916	RPE-100	A-175-2	710 713
C-40017-G C-40021-G C-40025-G C-40029-G C-40033-G	2-1/8 2-5/8 3-1/8 3-5/8 4-1/8	—	4	RCW-100, RC-10098 or RC-10098-HH	6555	RPE-100	A-175-2	878 883 875 884 892
			NPT P	RC-4864.	IS			
C-484-PG C-966-PG C-1448-PG C-19212-PG	1/2 3/4 1 1-1/2	_	1 2 3 4	RC-4804, RC-48GL, RCW-48, or RC-4864-HH	787 1572 2360 3146	RPE-48-BD	A-685	231 373 519 657
C-40016-PG	2	_	4	RCW-100, RC-10098 or RC-10098-HH	6555	RPE-100	A-175-2	875

UL and UL_C Listed – Guide SMGT-File No. SA-1756A & B.

Maximum rated pressure of 34.4 bar, except for the Type C-R420 Series which has a maximum rated pressure of 27.5 bar.

*Optional Secondary Filter must be purchased separately. O-rings (p/n 621-025) are supplied with each secondary filter, but can be purchased separately. The secondary filter cannot be used if the shell is installed in the suction line.

Type numbers with G suffix indicate that unit is supplied with 1/4" female pipe connection in the end plate and pipe plug. For liquid line service an angle charging valve for system charging purposes can be installed in place of the pipe plug. Angle charging and Schrader type access valves are available from your Sporlan Wholesaler. Type numbers with P suffix indicates female threaded pipe connections.

Ammonia Catch-All Filters prolong the life of ammonia systems by using the Catch-All to effectively remove scale and other solid contaminants. Select a model from those listed above with female pipe connections.

Note: Do not use the RPE-48-BD, RPE-100 filter elements or the RC-48GL core in ammonia systems.

22, 134a, 404A, 407C, 410A, 507

Liquid Line Ratings and Selection Recommendations

-	cm²	②RATINGS AT ARI STANDARD CONDITIONS														SELECTION RECOMMENDATIONS (kW)						
				v	VATER	CAPA	CITY –	DROP	S								REF	RIGE	RATION		AIR TIONING	
ТҮРЕ	SURFACE SURFACE SURFACE	R- 60 P	22 PPM		34a PPM	&!	04A 507 PM	R-4 50 P	07C PM	R-4 50 F	10A PM	1	©REFRIGERANT FLOW CAPACITY kW at 0.07 bar ∆P					& L0	ATURE	FIELD REPLACEMENT or FIELD BUILT UP SYSTEMS		
	FILT	25°C	50°C	25°C	50°C	25°C	50°C	25°C	50°C	25°C	50°C	22	134a	404A & 507	407C	410A	134a	22	404A & 507	134a	22, 407C & 410A	
0.000									S	EALEI	<u>) ТҮРЕ</u>			1								
C-032 C-032-CAP C-032-S C-032-F	58	3.1	2.5	3.4	2.4	3.6	2.9	2.6	0.9	1.4	1.0	5.28	4.57	3.52	4.57	4.92	0.88	0.88	0.88	1.76	1.76	
C-032-FM C-033														8.09								
C-033-S C-052												13.4	12.3	9.14	12.3	13.0						
C-052-S C-052-F C-052-FM	97	7.3	6.0	7.9	5.7	8.5	6.9	6.2	2.0	3.2	2.4	7.39	6.68	4.92	6.68	7.03	1.17	1.17	1.17	2.64 thru	2.64 thru	
C-0525-S C-053 C-053-S												14.4		8.09 9.50 10.9	13.4	14.1				3.52	7.03	
C-082 C-082-S C-0825-S												7.39	6.68	4.92 8.44	6.68	7.03	1.76	1.76	1.76	2.64	3.52	
C-083 C-083-S C-084	135	12.0	9.8	13.1	9.4	14.0	11.4	10.1	3.3	5.2	3.9	15.8 18.3 30.6	14.8 16.5 27.8	10.6 12.0 20.7	14.8 16.5 28.1	15.5 17.6 29.9	thru 5.28	thru	thru 3.52	thru 7.03	thru 7.03	
C-084-S C-162														22.5 4.92								
C-162-S C-1625-S C-163 C-163-S C-164 C-164-S C-165 C-165-S	213	17.3	14.9	19.8	14.3	21.2	17.3	15.4	5.0	7.9	6.0	13.0 15.8 18.3 35.5 38.7 48.5	11.6 14.8 16.5 32.7 35.5 44.3	8.44	11.6 14.8 16.5 32.7 35.5 44.7	12.3 15.5 17.6 34.2 37.6 47.1	3.52 thru 7.03	5.28 thru 10.6	2.64 thru 7.03	3.52 thru 17.6	5.28 thru 17.6	
C-303 C-303-S C-304 C-304-S C-305 C-305-S C-305-S C-307-S	342	34.8	28.4	37.8	27.3	40.5	32.9	29.3	9.5	15.1	11.4	18.6 35.5 38.7 52.4 59.4 76.0	32.7 35.5 47.8 54.5 69.6	12.0 23.9 25.7 34.8 39.7 50.6	32.7 35.5 48.2 54.5 70.0	17.6 34.5 37.6 51.0 57.7 73.9	10.6 thru 17.6	10.6 thru 17.6	7.03 thru 17.6	10.6 thru 26.4	14.1 thru 35.2	
C-414 C-414-S C-415 C-415-S C-415-S C-417-S C-419-S C 607 S	432	46.8	35.7	50.9	36.7	54.4	44.3	39.4	12.7	20.4	15.3	43.6 55.6 61.5 77.7 85.5	40.1 51.0 56.6 71.4 78.4	26.7 29.2 37.3 41.5 52.0 57.3	40.1 51.4 57.0 71.8 78.8	42.6 54.2 60.1 25.6 83.4	17.6 thru 35.2		17.6 thru 35.2	17.6 thru 42.2	26.4 thru 52.8	
C-607-S C-609-S	684	69.6	56.7	75.6	54.5	80.9	65.8	58.6	18.9	30.2	22.7			68.6 78.4			52.8	52.8	35.2	52.8	70.3	

🕑 Based on 30°C liquid line temperature and a refrigerant flow of 400 grams per minute per kW of Refrigerant 134a; 374 grams per minute per kW of Refrigerant 22; 503 grams per minute per kW for Refrigerant 404A; 375 grams per minute per kW for Refrigerant 407C; 362 grams per minute per kW for Refrigerant 410A and 529 grams per minute per kW for Refrigerant 507. Ratings in accordance to ARI Standard 710.

20 drops = 1 gram = 1 cc.

(3) The filtration area is equal to the core surface area plus the large internal surface available for depth filtration.

Note: The variation in flow ratings of filter-driers having the same size core and shell is caused by the difference in connection sizes used.

22, 134a, 404A, 407C, 410A, 507

Liquid Line Ratings and Selection Recommendations

		②RATINGS AT ARI STANDARD CONDITIONS									SEL	ECTIO	ON RECOM (kW)	MENDA	TIONS	
	ACE AREA	ACE ARE/			CITY –	GRAN	IS	() RE	FRIGER	ANT	REF	RIGE	RATION	AIR Conditioning		
ТҮРЕ	SURFA SURFA FILTERING Cm ²		22 PPM		34a PPM	R-4 & ! 50 P	507		FLOW APACIT at 0.07 b		LOW .	ГЕМР	RCIAL & ERATURE MENT	FIELD REPLACEMENT or FIELD BUILT UP SYSTEMS		
		25°C	50°C	25°C	50°C	25°C	50°C	22	134a	404A & 507	134a	22	404A, 502 & 507	134a	22	
	REPLACEABLE CORE TYPE WITH STANDARD CORES (See page 36)															
C-485-G								51.4	47.1	34.5	26.4	35.2	26.4	26.4	35.2	
C-487-G	413	17.4	14.4	29.2	23.7	20.4	15.5	84.1	77.0	56.3	42.2	52.8	35.2	42.2	52.8	
C-489-G								152	139	102	4Z.Z	52.8	35.2	52.8	70.3	
C-967-G	826	34.7	28.8	58.3	47.3	40.8	30.9	138	126	92.2	70.3	87.9	52.8	70.3	87.9	
C-969-G	820	34.7	20.0	50.3	47.3	40.8	30.9	171	157	115	87.9	123	87.9	87.9	123	
C-1449-G	1220	52.1	43.2	87.5	71.0	61.2	46.4	208	190	140	106	141	106	106	141	
C-14411-G	1239	52.1	43.Z	07.0	/1.0	01.2	40.4	236	216	158	141	176	123	141	176	
C-19211-G								297	272	198	176	246	176	176	246	
C-19213-G	1652	69.4	57.6	117	94.6	81.6	61.8	348	319	233	211	281	193	211	281	
C-19217-G								366	335	244	229	299	211	229	299	
C-30013-G	1897	134	93.9	196	151	132	99.6	394	359	262	264	352	246	264	352	
C-40017-G	2529	178	125	261	201	175	133	471	471 464 340		387	457	352	387	457	

	cm ²				2	RATIN	IGS AT	ARIS	STAND	ARD C	ONDI	TIONS	3				SELE	CTION	I RECC (k)		NDAT	IONS	
				W	VATER	CAPAC	ITY – (GRAN	IS				DEEDI	GERA		.	REFR	IGERA	TION	AIR Conditioning			
ТҮРЕ	SURFACE SURFACE SURFACE		22 PPM		34a PPM	R-4 & 5 50 P	507		107C PPM		10A PPM		C/	APACI t 0.07 l	ТҮ		COMMERCIAL & LOW TEMPERATURE EQUIPMENT			FIELD REPLACEMENT or FIELD BUILT UP SYSTEMS			
		25°C	50°C	25°C	50°C	25°C	50°C	25°C	50°C	25°C	50°C	22	134a	404A & 507	407C	410A	134a	22	404A & 507	134a	22 & 407C	410A	
			R	EPLA	CEABL	E CORE	ТҮРЕ	WITH	HIGH	WATE	R CAP	ACIT	Y COR	ES (Se	e pag	e 36)							
C-R424-G												40.1	36.6	26.7	36.9	42.6	10.6	17.6	17.6	17.6	17.6	17.6	
C-R425-G	432	45.1	36.8	49.1	35.3	52.5	42.7	38	12.3	20.4	15.3	48.2	44.0	32.0	44.0	60.1	17.6	26.4	17.6	26.4	35.2	35.2	
C-R427-G												65.1	59.4	43.6	59.8	75.6	17.0	20.4	17.0	20.4	3 <u>5</u> .2	30.Z	
C-485-G												51.4	47.1	34.5	47.5	50.3	26.4	35.2	26.4	26.4	35.2	35.2	
C-487-G	413	55.5	45.2	60.1	43.4	64.5	52.5	46.7	15.1	24.1	18.1	84.1	77.0	563	77.4	81.9	42.2	52.8	35.2	42.2	52.8	52.8	
C-489-G												152	139	102	140	14.8				52.8	70.3	70.3	
C-967-G	826	111	90.4	120	86.8	129	105	93.4	30.1	48.1	36.1	138	126	92.2	127	135	70.3	87.9	52.8	70.3	87.9	87.9	
C-969-G	020		50.4	120	00.0	125	103	33.4	50.1	-70.1	50.1	171	157	115	158	167	87.9	123	87.9	87.9	123	123	
C-1449-G	1239	166	136	180	130	194	157	140	45.2	72.2	54.2	208	190	140	192	204	106	141	106	106	141	141	
C-14411-G	.200	.50	.50	.50			.57		10.2	,	57.2	236	216	158	217	230	141	176	123	141	176	176	
C-19211-G												297	272	198	273	290	176	246	176	176	246	246	
C-19213-G	1652	222	181	240	174	258	210	187	60.2	96.2	72.2	348	319	233	320	340	211	281	193	211	281	281	
C-19217-G												366	335	244	337	355	229	299	211	229	299	299	
C-30013-G	1897	339	277	369	266	395	321	286	92.2	—	—	394	359	262	362	—	264	352	246	264	352		
C-40017-G	2529	452	369	492	354	526	428	382	123	—	—	471	464	341	468	—	287	457	352	387	457	—	

🕑 Based on 30°C liquid line temperature and a refrigerant flow of 400 grams per minute per kW of Refrigerant 134a; 374 grams per minute per kW of Refrigerant 22; 503 grams per minute per kW for Refrigerant 404Å; 375 grams per minute per kW for Refrigerant 407C, 362 grams per minute per kW for Refrigerant 410Å and 529 grams per minute per kW for Refrigerant 507. Ratings in accordance to ARI Standard 710.

20 drops = 1 gram = 1 cc.

(3) The filtration area is equal to the core surface area plus the large internal surface available for depth filtration.

Note: The variation in flow ratings of filter-driers having the same size core and shell is caused by the difference in connection sizes used.

22, 134a, 404A, 407C, 410A, 507

Suction Line Filter-Drier Ratings for New Systems and Clean-up after Burnout **Selection Instructions**

Except for the values in bold (R-22/R-407C/R-410A at 5°C; 0.55 bar pressure drop), the flow capacities are rated at the maximum recommended pressure drop for permanent installation.

To ensure the suction line filter-drier has ample contaminant removal ability, selection must be based on flow capacity and the amount of desiccant required for system clean-up. The suction line filter-drier must be large enough to adequately remove acid, moisture and solid contaminants without causing nuisance plug-ups. Sizing is especially important for sealed type suction line filter-driers since they should be sized to clean a small system with one service call.

To reduce the pressure drop through replaceable core shells, substitute cores with filter elements (see page 36) after the system has been cleaned up. The 6171-5 screen should be discarded when cores are replaced with RPE-48-BD elements in RSF shells.

For complete description of the suggested system clean-up procedure, request Bulletin 40-10.

Suction Line Flow Capacity (kW) – Sealed Type

REFRIGERANT				22				134a			40	4A		407C	410A
EVAPORATOR TEMPERATURE		5°C	-5°C	-15°C	-30°C	-40°C	5°C	-5°C	-15°C	-5°C	-15°C	-30°C	-40°C	5°C	5°C
F	RESSURE DROP (bar)	0.21	0.14	0.10	0.07	0.04	0.14	0.10	0.07	0.14	0.10	0.07	0.035	0.21	0.21
	C-083-S-T-HH	7.4	3.2	4.6	1.8	0.7	4.5	2.9	1.8	4.2	2.8	1.8	0.7	7.0	9.5
	C-084-S-T-HH	7.4	4.6	3.2	1.8	1.1	4.9	3.2	2.1	4.6	2.8	1.8	1.1	7.4	9.5
	C-144-S-T-HH	7.4	4.6	3.2	1.4	0.7	4.6	2.8	1.8	3.2	2.1	1.1	0.7	7.4	9.5
	C-145-S-T-HH	12.0	7.7	4.9	2.8	1.4	7.4	4.6	2.8	5.6	3.5	2.1	1.1	12.0	16.2
	C-146-S-T-HH	16.9	10.6	7.0	4.2	2.1	10.2	6.3	3.9	7.4	4.9	3.2	1.4	16.9	21.8
	C-147-S-T-HH	18.6	11.6	7.7	4.6	2.5	11.3	7.4	4.6	8.5	5.6	3.2	1.8	18.6	23.9
	C-149-S-T-HH	24.6	15.5	10.2	6.0	3.2	14.8	9.5	5.6	11.3	7.4	4.2	2.1	24.6	31.7
ш	C-164-S-T-HH	9.5	6.0	3.9	2.5	1.1	6.0	3.9	2.5	5.6	3.5	2.1	1.1	9.5	12.7
2	C-165-S-T-HH	11.3	7.0	4.6	2.8	1.4	7.0	4.6	2.8	6.7	4.2	2.5	1.4	11.3	14.8
>	C-166-S-T-HH	14.1	8.8	5.6	3.5	1.8	9.1	6.0	3.5	8.4	5.6	3.2	1.8	13.7	18.3
	C-167-S-T-HH	15.8	9.9	6.3	3.9	1.8	9.9	6.3	3.9	9.5	6.0	3.5	1.8	15.5	20.8
B	C-305-S-T-HH	12.0	7.4	4.9	2.8	1.4	7.7	4.9	2.8	7.0	4.6	2.8	1.4	12.0	15.5
	C-306-S-T-HH	15.5	9.9	6.3	3.9	1.8	9.9	6.3	3.9	9.5	6.0	3.5	1.8	15.5	20.4
	C-307-S-T-HH	18.6	11.6	7.7	4.6	2.1	12.0	7.7	4.6	11.3	7.0	4.2	2.1	18.6	24.6
SE	C-309-S-T-HH	20.8	13.0	8.4	5.3	2.5	13.4	8.4	5.3	12.7	8.1	4.9	2.5	20.4	27.1
	C-417-S-T-HH	21.1	13.4	8.8	5.3	2.5	13.4	8.8	5.3	12.7	8.1	4.9	2.5	21.1	27.8
	C-419-S-T-HH	21.8	13.7	8.8	5.3	2.8	14.1	9.1	5.6	13.0	8.4	5.3	2.5	21.5	28.1
	C-437-S-T-HH	28.1	17.6	11.6	7.0	3.5	17.9	11.6	7.4	16.9	10.9	6.7	3.2	27.8	36.6
	C-439-S-T-HH	35.2	22.2	14.4	8.8	4.2	22.5	14.8	8.8	21.1	13.7	8.4	4.2	34.8	46.1
	C-4311-S-T-HH	39.0	24.3	16.2	9.5	4.9	25.0	16.2	9.9	23.6	15.1	9.1	4.6	38.3	50.7
	C-4313-S-T-HH	42.9	26.7	17.6	10.6	5.3	27.4	17.9	10.9	25.7	16.5	10.2	4.9	42.2	55.9
	C-607-S-T-HH	23.6	14.8	9.5	5.6	2.8	14.8	9.5	6.0	14.1	9.1	5.6	2.8	23.2	30.6
	C-609-S-T-HH	26.4	16.5	10.9	6.3	3.2	16.9	10.9	6.7	15.8	10.2	6.3	3.2	26.0	34.5

Suction Line Flow Capacity (kW) – Shells with Replaceable Cores

REFRIGERANT				2	2			134a				404A	& 507		407C		410A	
EVAPORATOR TEMPERATURE		5°C 5°C		-5°C	C -15°C -30°C -40°C		5°C -5°C -15°C		-5°C	-5°C -15°C -30°C		-40°C	-40°C 5°C		5°C			
F	PRESSURE DROP (bar)	0.21	0.55*	0.14	0.10	0.07	0.035	0.14	0.10	0.07	0.14	0.10	0.07	0.035	0.21	0.55*	0.21	0.55*
	RSF-487-T	35.5	61.6	22.2	14.4	8.8	4.2	22.5	14.8	8.8	21.5	14.1	8.1	4.2	35.2	60.8	44.3	77
2	RSF-489-T	42.9	74.2	26.7	17.6	10.6	5.3	27.4	17.9	10.9	25.7	16.9	9.9	4.9	42.2	72.8	53.8	92.8
	RSF-4811-T	52.0	90.0	32.7	21.5	12.7	6.3	33.1	21.8	13.0	31.3	20.4	12.0	6.0	51.4	89.0	65.1	113
-	RSF-4813-T	55.9	96.7	35.2	22.9	13.7	6.7	35.5	23.6	14.1	33.8	21.8	12.7	6.3	55.2	95.7	70	121
2	RSF-4817-T	60.5	105	38.0	25.0	14.8	7.4	38.7	25.3	15.5	36.6	23.9	13.7	7.0	59.8	103	75.6	131
0	RSF-4821-T	65.4	113	40.8	26.7	16.2	8.1	41.9	27.4	16.5	39.4	25.7	15.1	7.7	64.7	111	81.9	142
5	RSF-9611-T	83.7	137	55.9	39.0	25.0	13.7	55.1	36.9	23.6	50.7	34.5	21.8	11.6	80.5	132	105	172
ų na kara starta na k	RSF-9613-T	105	172	69.6	48.2	30.6	16.5	68.6	45.7	28.5	63.0	42.9	26.7	14.1	101	166	130	216
	RSF-9617-T	105	172	69.6	48.2	30.6	16.5	68.6	45.7	28.5	63.0	42.9	26.7	14.1	101	166	130	216
A	RSF-9621-T	105	178	70.3	48.2	30.6	16.5	68.6	45.7	28.5	63.0	42.9	26.7	14.1	102	175	130	216
B	RSF-9625-T	106	183	70.3	48.2	30.6	16.5	68.6	45.7	28.5	63.6	42.9	26.7	14.1	105	179	132	223
A	C-30013-G	93.6	162	58.7	38.3	22.9	11.3	59.4	38.7	23.6	56.3	36.2	21.8	10.9	92.5	150	—	—
	C-30017-G	95.0	164	59.4	39.0	23.2	11.6	60.5	39.0	23.9	57.0	36.6	22.2	10.9	93.9	152	—	—
	C-40017-G	116	200	72.5	47.5	28.5	14.0	73.9	47.8	29.2	69.6	45.0	25.3	13.4	114	186	—	—
a	C-40021-G thru C-40033-G	116	200	72.5	47.5	28.5	14.0	73.9	47.8	29.2	69.6	45.0	25.3	13.4	114	186	_	_

*Denotes TEMPORARY INSTALLATION. Cores for system clean-up; RPE-48-BD or RPE-100 Filter Elements should be installed after clean-up.

Rated in accordance with ARI Standard 730.

For a simplified "Quick Selection Guide," request Form 40-109.

THE PERFECT FILTER-DRIER

Significance of the Type Number

The letters and numerals in the Catch-All® type number each have a significance. The "C" indicates Catch-All. The **FIRST TWO OR THREE DIGITS** indicate cubic inches of desiccant. The **LAST ONE OR TWO DIGITS** indicate fitting size in eighths of an inch. For sealed models, a "-S" following the last digit indicates solder fittings, and **NO LETTER** indicates a flare fitting. Replaceable core models (C-420 and larger) only have solder connections and the "-S" is omitted. Examples are: C-083 is 8 cu. in. and 3/8" flare, C-309-S is 30 cu. in. and 1-1/8" solder, C-19213-G is 192 cu. in. and 1-5/8" solder.

Replaceable Cores and Pleated Filter Elements – Order Separately

Cores for replaceable core type filter-driers are molded of exactly the same desiccants that are used in the popular sealed filter-driers.

Cores are individually packed in *metal cans*, fully activated and hermetically sealed against moisture and dirt.

Filter Elements are dried and packed in individual sealed metal cans. This method of packaging prevents the element from picking up moisture from the atmosphere.

Detailed *instructions* are printed on each can. Each can contains a *"triple gasket"* consisting of a new end plate gasket, an end plate gasket for certain competitive filter-driers and a core gasket where desired. See the specifications on page 32 for the number of cores required for each type drier.

RCW-42 – High Water Capacity Core – Order as separate item – Fits ONLY shell type C-R424, C-R425 and C-R427. **Designed specially for use with POE oils.** This core should be used on systems that have a ruptured water cooled condenser, or that have been exposed to the atmosphere, or for some reason have a high amount of moisture in the system.

RC-4864 – Activated Core – Order as separate item – Fits types C-480 thru C-19200 Series shells and Replaceable Suction Filter (RSF) shells. This is the standard core suitable for most installations in the liquid or suction line applications.

RCW-48GL – Activated Core – Order as separate item – Fits types C-480 thru C-19200 Series shells and Replaceable Suction Filter (RSF) shells. Core is similar to the RC-4864, but has been reformulated to be an economical alternative for today's HFC systems. For liquid and suction line service.

RCW-48 – High Water Capacity Core – Order as separate item – Fits types C-480 thru C-19200 Series shells and Replaceable Suction Filter (RSF) shells. **Designed specially for use with POE**

HH Style Catch-All for Wax Removal

Small amounts of wax are often a problem on **low temperature** systems. Even well engineered systems frequently contain minute quantities of wax which are sufficient to clog expansion valve screens or cause sticking of the valve. Sporlan has developed a special blend of desiccants including activated charcoal which removes small amounts of wax in the liquid line before this wax can cause trouble at the expansion valve. These Catch-All Filter-Driers have been very successful in correcting trouble jobs in the field.

Select an HH Style Catch-All Filter-Drier if wax problems occur on low temperature systems. In addition to their wax removal ability, these filter-driers will remove all of the other harmful contaminants that the standard filter-driers remove. Listed in the table are various Catch-All models that incorporate the HH style core. Other suffix letters indicate special qualities. For example:

- "-T" indicates a pressure tap consisting of a Schrader type access valve on the inlet end of the Catch-All.
- "-**HH**" indicates a charcoal style core for wax removal and clean-up after a hermetic motor burnout.
- "-F" indicates a female flare outlet fitting with a male flare inlet fitting.
- "-FM" indicates a female flare inlet fitting with a male flare outlet fitting.
- "-CAP" indicates a Catch-All particularly designed for installation on capillary tube systems.

olded of exactly oils. This core should be used on systems that have a ruptured water cooled condenser, or that have been exposed

> to the atmosphere, or for some reason have a high amount of moisture in the system.

RC-4864-HH – Activated Charcoal Core – Order as separate item – Fits types C-480 thru C-19200 Series shells and Replaceable Suction Filter (RSF) shells. This core should be used for wax removal on low temperature systems, and for clean-up of systems that have had a hermetic motor burnout.

RPE-48-BD – Filter Element – Order as separate item – Fits types C-480 thru C-19200 Series shells and **Replaceable Suction Filter** (**RSF**) shells. This element should be used in RSF shells installed in the suction line to obtain the lowest possible pressure drop. In cleaning up a system after a hermetic motor burnout, cores should be used first. Then after the system is thoroughly clean, this filter element can be installed in the RSF shell.

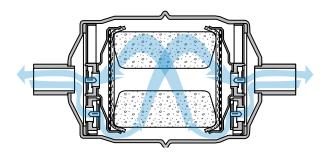
RC-10098 – Activated Core – Order as separate item – Fits types C-30000 and C-40000 Series shells. This core has a high water capacity and should be used on all standard liquid and suction line applications.

RCW-100 – High Water Capacity Core – Order as separate item – Fits types C-30000 and C-40000 Series shells. **Designed specially for use with POE oils.** This core should be used on systems that have a ruptured water cooled condenser, or that have been exposed to the atmosphere, or for some reason have a high amount of moisture in the system.

RC-10098-HH – Activated Charcoal Core – Order as separate item – Fits types C-30000 and C-40000 Series shells. This core should be used for wax removal on low temperature systems, and for clean-up of systems that have had a hermetic motor burnout.

RPE-100 – Filter Element – Order as separate item – Fits types C-30000 and C-40000 Series shells. This filter element should be used in the suction line to obtain the lowest possible pressure drop after cores were used for system clean-up.

ТҮРЕ	CONNECTIONS Inches	ТҮРЕ	CONNECTIONS Inches
C-052-HH	1/4 SAE Flare	C-303-HH	3/8 SAE Flare
C-082-HH	1/4 SAE Flare	C-304-HH	1/2 SAE Flare
C-083-HH	3/8 SAE Flare	C-304-S-HH	1/2 ODF Solder
C-162-HH	1/4 SAE Flare	C-305-HH	5/8 SAE Flare
C-163-HH	3/8 SAE Flare	C-305-S-HH	5/8 ODF Solder
C-163-S-HH	3/8 ODF Solder	C-414-HH	1/2 SAE Flare
C-164-HH	1/2 SAE Flare	C-415-HH	5/8 SAE Flare
C-164-S-HH	1/2 ODF Solder	C-417-S-HH	7/8 ODF Solder
C-165-HH	5/8 SAE Flare	RC-4864-HH	Replaceable
C-165-S-HH	5/8 ODF Solder	RC-10098-HH	Core


For dimensions, refer to the specifications for standard filter-driers or consult Bulletin 40-10.

Reversible Heat Pump Filter-Driers

Design Benefits

- A short overall length for easy installation.
- Drier operates in either flow direction with low pressure drop.
- Proven metal check valves used in construction no synthetic materials.
- The Sporlan dependable molded core used for maximum filtration ability. When the flow direction reverses, dirt already collected remains in the filter-drier.
- A carefully engineered blend of desiccants for maximum water capacity and acid removal ability. The HPC-160-HH Series also has the HH style core with activated charcoal which offers maximum ability to remove oleoresin and other reactive chemical constituents in the lubricant.
- Same rugged construction as used in the Catch-All[®].

Specifications – For New Installations

			DIMENS	ONS					SP	ECIFIC	ATION	S				
									W/	ATER C	APACI	ТҮ				
TYPE NUMBER	CONNECTION SIZE Inches	SELECTION RECOMMEND. kW	OVERALL LENGTH mm	DIA. mm		W CAPA @ 0.07 ba		R- Gran 60 p	ns at	R-4 Gran 50 p			10A ns at opm		l ID CAP s (wt.) @	
					R-22	R-407C	R-410A	24°C	52°C	24°C	52°C	24°C	52°C	R-22	R-407C	R-410A
HPC-103	3/8 Flare		171		11.0	10.9	11.6									
HPC-103-S	3/8 Solder	3.5 thru 17.5	149	76	11.9	10.9	11.0	10.8	8.8	9.1	3.0	4.7	3.5	346	304	301
HPC-104	1/2 Flare	3.5 unfu 17.5	176	70	15.8	14.4	15.4	10.8	0.0	9.I	3.0	4./	ა.ე	540	304	301
HPC-104-S	1/2 Solder		152		10.0	14.4	15.4									

Specifications – For Clean-up after Burnout

			DIMENS	ONS					S	PECIF	CATIO	INS				
									WA	TER C	APAC	ΙΤΥ				
TYPE NUMBER	CONNECTION SIZE Inches	SELECTION RECOMMEND. kW	OVERALL LENGTH mm	DIA. mm		W CAPA @ 0.07 b		Gra	- 22 ms at ppm	Gra	07C ns at ppm	Gra	10A ms at ppm		ID CAPA s (wt.) @	
					R-22	R-407C	R-410A	24°C	52°C	24°C	52°C	24°C	52°C	R-22	R-407C	R-410A
HPC-163-HH	3/8 SAE Flare		198		13.0	11.9	12.6									
HPC-163-S-HH	3/8 ODF Solder	•	176]	13.0	11.9	12.0									
HPC-164-HH	1/2 SAE Flare	3.5 thru 17.5	202	76	14.0	13.0	13.7	4.7	4.1	4.5	4.4	3.5	5.0	461	360	357
HPC-164-S-HH	1/2 ODF Solder	5.5 thru 17.5	180	70	14.0	13.0	13.7	4.7	4.1	4.0	4.4	3.0	5.0	401	300	307
HPC-165-HH	5/8 SAE Flare		210]	17.0	15.0	16.0									
HPC-165-S-HH	5/8 ODF Solder		187		17.2	15.8	16.8									
HPC-303-HH	3/8 SAE Flare		275		17.9	16.5	17.5									
HPC-303-S-HH	3/8 ODF Solder		256		17.9	10.5	17.5									
HPC-304-HH	1/2 SAE Flare		281		20.7	10.0	20.2									
HPC-304-S-HH	1/2 ODF Solder	14 thru 42	259	76	20.7	18.9	20.3	8.4	6.0	8.1	4.4	6.2	5.5	559	491	488
HPC-305-HH	5/8 SAE Flare		289													
HPC-305-S-HH	5/8 ODF Solder	•	265]	21.4	19.6	21									
HPC-307-S-HH	7/8 ODF Solder		280													

HPC-100 Series – Core volume is 164 cm³. Core surface filtering area is 116 cm². Maximum rated pressure is 45 bar.

HPC-160-HH Series – Core volume is 229 cm³. Core surface filtering area is 168 cm². Maximum rated pressure is 45 bar. HPC-300-HH Series – Core volume is 292 cm³. Core filtering area is 342 cm². Maximum rated pressure is 45 bar.

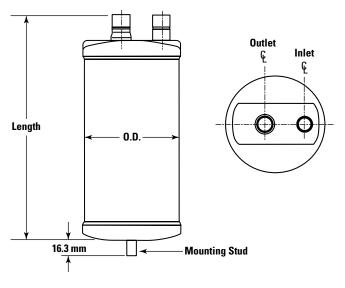
UL and UL_C Listed – Guide-SMGT-File No. SA-1756A & B.

STEEL SUCTION LINE ACCUMULATORS

U-Tube Style Accumlators

The U-tube accumulator design is a result of extensive laboratory testing plus detailed investigation of the various accumulators currently available. It takes into account essential requirements such as safe holding volume (relative to the system's total charge), protected flow control for positive refrigerant and oil return, and minimum pressure drop across the accumulator.

Sporlan offers standard accumulator models designed for application on heat pump and refrigeration systems from 0.88 through 42.2 kW. Liquid refrigerant holding requirements of suction accumulator may vary by application. Because of the diversity in systems, optimum performance should be determined by the system designer. Consult Sporlan for assistance if required.


Features and Benefits

- Solid copper connections
- U-tube design for maximum flow of refrigerant and minimum oil entrapment
- Inlet flow deflector guides refrigerant toward wall for smooth tangential flow and gradual expansion
- U-tube entrance is positioned behind the inlet flow deflector to prevent unwanted liquid refrigerant from entering and damaging compressor
- Metering orifice matched to system capacity assures optimum liquid refrigerant and oil flow back to compressor
- Protective screen and orifice assembly on U-tube protects against contaminants affecting metering function
- Fittings and U-tube are matched to accumulator holding capacity and total system charge for minimum pressure drop and maximum refrigerant flow
- U.L. listed for 24.5 bar maximum working pressure. File No. SA5172
- Powder coating surpasses 500 hour ASTM salt spray
- Integral 221°C fuse plugs (U.L. File No. SA5441)

Model PA6

Dimensions and Flow Data

STEEL SUCTION LINE ACCUMULATORS 22, 134a, 404A, 407C, 409A, 410A, 507

Dimensions and Flow Data

MODEL	CONN.	DIMENS mm		Mt.)	EVAP.	22 &	404A	RECOMN 134a 8		CAPACITY 40		F REFRIG		1)7
NUMBER	Inches (ODF)	LENGTH	0.D.	CAPACITY* Grams (wt.)	TEMP. °C	kW @ .07 bar	Min. kW	kW @ .07 bar	Min. kW	kW @ .07 bar	Min. kW	kW @ .07 bar	Min. kW	kW @ .07 bar	Min. kW
					5	7.03	1.23	5.87	1.06	6.93	1.62	6.79	5.06	5.21	0.95
PA3060-10-4	1/2	263	76	992	-18	5.42	0.88	3.45	0.56	5.38	0.63	5.28	2.29	3.87	0.70
PA3060-10-5	5/8	263	76	992	-29	4.68	0.74	2.43	0.39	4.64	0.39	4.57	1.48	3.27	0.56
					5	7.39	1.23	6.15	1.06	7.28	1.62	7.10	5.06	5.45	0.9
PA3060-15-5	5/8	382	76	1559	-18	5.70	0.88	3.62	0.56	5.63	0.63	5.52	2.29	4.08	0.7
					-29	4.92	0.74	2.57	0.39	4.89	0.39	4.78	1.48	3.45	0.5
					5	8.09	1.23	6.75	1.06	7.98	1.62	7.81	5.06	5.98	0.9
PA3060-15-6	3/4	382	76	1531	-18	6.23	0.88	3.94	0.56	6.15	0.63	6.05	2.29	4.47	0.7
					-29	5.38	0.74	2.81	0.39	5.35	0.39	5.24	1.48	3.76	0.5
					5	10.41	1.23	8.69	1.06	10.27	1.62	10.02	5.06	7.70	0.9
PA4065-9-5C	5/8	244	102	1701	-18	8.02	0.88	5.06	0.56	7.95	0.63	7.77	2.29	5.73	0.7
					-29	6.96	0.74	3.62	0.39	6.89	0.39	6.79	1.48	4.89	0.5
					5	10.55	1.23	8.90	1.06	10.41	1.62	10.16	5.06	7.74	0.9
PA4065-9-6C	3/4	244	102	1644	-18	8.09	0.88	5.21	0.56	8.02	0.63	7.84	2.29	5.98	0.7
	, i				-29	7.03	0.74	3.69	0.39	6.96	0.39	6.86	1.48	4.92	0.5
					5	13.43	2.01	11.22	1.72	13.26	2.43	12.94	7.60	9.92	1.6
PA5083-9-6C	3/4	244	127	2523	-18	10.37	1.44	6.54	0.95	10.27	0.95	10.06	3.45	7.39	1.16
					-29	8.97	1.23	4.64	0.63	8.90	0.56	8.72	2.22	6.30	0.9
					5	13.72	2.01	11.29	1.72	13.54	2.43	13.22	7.60	9.85	1.6
PA5083-9-7C	7/8	245	127	2438	-18	10.55	1.44	6.61	0.95	10.45	0.95	10.23	3.45	7.39	1.1
	.,				-29	9.14	1.23	4.68	0.63	9.07	0.56	8.90	2.22	6.33	0.9
					5	19.03	3.10	15.86	2.64	18.78	3.38	18.32	10.66	14.07	2.4
PA5083-12-7C	7/8	327	127	3544	-18	14.67	2.25	9.28	1.48	14.52	1.34	14.24	4.82	10.48	1.7
		-			-29	12.70	1.90	6.58	0.98	12.59	0.77	12.38	3.10	8.90	1.4
					5	15.40	2.01	11.29	1.51	15.19	2.43	14.84	7.60	11.36	1.6
PA5083-11-7C	7/8	288	127	3062	-18	11.85	1.44	6.61	0.84	11.75	0.95	11.50	3.45	8.48	1.1
	•				-29	10.27	1.23	4.68	0.56	10.16	0.56	9.99	2.22	7.17	0.9
					5	13.54	2.01	11.29	1.72	13.36	2.43	13.05	7.60	9.99	1.6
PA5083-11-6C	3/4	288	127	3147	-18	10.45	1.44	6.61	0.95	10.34	0.95	10.13	3.45	7.46	1.1
					-29	9.00	1.23	4.68	0.63	8.93	0.56	8.76	2.22	6.33	0.9
					5	21.80	3.10	18.18	2.64	21.52	3.38	21.00	10.66	16.11	2.4
PA5083-15-7C	7/8	390	127	4423	-18	16.81	2.25	10.66	1.48	16.63	1.34	16.32	4.82	11.99	1.79
	-, -				-29	14.52	1.90	7.56	0.98	14.38	0.77	14.14	3.10	10.20	1.4
					5	21.80	3.10	18.18	2.64	21.52	3.38	21.00	10.66	16.11	2.4
PA5083-17-7C	7/8	438	127	5075	-18	16.81	2.25	10.66	1.48	16.63	1.34	16.32	4.82	11.99	1.7
	.,				-29	14.52	1.90	7.56	0.98	14.38	0.77	14.14	3.10	10.20	1.4
					5	31.65	10.55	31.05	6.93	31.23	5.52	30.49	17.34	25.67	10.5
PA6125-15-9C	1-1/8	381	152	5982	-18	19.69	7.03	19.76	2.88	19.52	2.18	19.13	7.84	15.83	7.0
	, .				-29	15.12	2.81	15.16	1.76	14.98	1.27	14.74	5.03	11.96	2.8
					5	42.20	10.55	42.38	6.93	41.67	5.52	40.65	17.34	34.47	10.5
PA6125-15-11C	1-3/8	387	152	6067	-18	26.38	7.03	26.45	2.88	26.13	2.18	25.60	7.84	21.10	7.0
	, .				-29	20.40	2.81	20.47	1.76	20.22	1.27	19.87	5.03	16.18	2.8
					5	30.95	10.55	31.09	6.93	30.56	5.52	29.82	17.34	25.32	10.5
PA6125-18-9C	1-1/8	457	152	7484	-18	19.34	7.03	19.41	2.88	19.17	2.18	18.78	7.84	15.47	7.0
	, .	,			-29	15.12	2.81	15.16	1.76	14.98	1.27	14.74	5.03	11.96	2.8
					5	38.69	10.55	38.86	6.93	38.19	5.52	37.24	17.34	32.00	10.5
PA6125-18-11C	1-3/8	457	152	7569	-18	24.62	7.03	24.69	2.88	24.37	2.18	23.91	7.84	19.34	7.0
	. 5/0	737	152	1000	-29	18.99	2.81	19.06	1.76	18.82	1.27	18.50	5.03	14.77	2.8
					-23	38.69	10.55	38.86	6.93	38.19	5.52	37.24	17.34	32.00	10.5
PA6125-20-11C	1-3/8	508	152	8562	-18	24.62	7.03	24.69	2.88	24.37	2.18	23.91	7.84	19.34	7.0
	1-0/0	500	I JZ	0:07	-10	24.0Z	1.05	24.03	2.00	24.37	2.10	23.31	104	17.04	1.0

*Holding capacity of R-22 at 5°C. Divide by 0.7 to obtain recommended maximum system charge on fixed orifice systems. Consult Sporlan for availability.

STEEL RECEIVERS

Features and Benefits

- Designed for refrigerant storage during normal operation and system pump down
- Allows the system to adjust to varying system conditions and loads
- Available in 4", 5" and 6" diameters (2-1/2" and 3" diameter vertical and horizontal receiver models available) – consult Sporlan
- Available up to 36 inches (90 cm) in length
- Integral 220°C fuse plug
- Available options: sightglasses, moisture indicators, float balls, valves, mounting brackets, belly bands, relief valve ports
- Valve is shipped unassembled
- **PTFE** gasket seal for valve

- UL file number SA5195 and CSA file number LR46423
- Powder coating surpasses 500 hour ASTM salt spray

MODEL NUMBER	DIAMETER cm	INLET FITTING	OUTLET FITTING	OVERALL LENGTH cm	HOLDING CAPACITY
PR4095-10-2	10.2	1/4 SAE Flare	1/4 SAE Flare	25.4	1.0 km
PR4095-10-2C	10.2	1/4 ODF Solder	1/4 ODF Solder	20.4	1.8 kg
PR5109-10-2	12.7	1/4 SAE Flare	1/4 SAE Flare	25.4	2.7 kg
PR5109-10-2C	12.7	1/4 ODF Solder	1/4 ODF Solder	23.4	2.7 Ky
PR5109-10-3	12.7	3/8 SAE Flare	3/8 SAE Flare	25.4	2.7 kg
PR5109-10-3C	12.7	3/8 ODF Solder	3/8 ODF Solder	20.4	2.7 KY
PR6125-12-3	15.2	3/8 SAE Flare	3/8 SAE Flare	30.5	4.5 kg
PR6125-12-3C	15.2	3/8 ODF Solder	3/8 ODF Solder	30.5	4.5 KY
PR6125-18-4	15.2	1/2 SAE Flare	1/2 SAE Flare	45.7	7.2 kg
PR6125-18-4C	13.2	1/2 ODF Solder	1/2 ODF Solder	40.7	7.3 kg

Holding capacity calculated at 90% system charge at 32°C for R-134a, R-22 and R-407C. For R-404A and R-507 multiply by 0.9. Consult Sporlan for R-410A applications. Steel Receivers have a 35 har M.R.P.

For complete information consult your nearest Sporlan Wholesaler or email europecold@parker.com and request Bulletin 40-10-6.

ACID TEST KITS – TYPE TA-1 and AK-3

Designed to Test Mineral, Alkylbenzene and POE Lubricants

 Thoroughly field proven
 Takes the guesswork out of service work

Design Benefits

- **Builds Customer Confidence** Show the test results of the acid test kit to customers, or perform the test in their presence. In this way they realize you are using the most up-to-date scientific method for system maintenance. Showing customers the test results will also help to convince them to spend the money necessary to do a proper clean-up job. Customers who are thoroughly confident of your abilities will be more interested in establishing preventive maintenance programs.
- Accurate and Reliable Using a simple, scientific method, you can precisely measure the amount of acid in a lubricant sample taken from a contaminated system. The test procedure has been proven by extensive field experience.

Convenient – Both the TA-1 and AK-3 are convenient to use.

The TA-1 has pre-measured solutions supplied in bottles with screw caps for easy handling. The AK-3 has all solutions and bottles supplied in a small fitted case. Either kit may be used on the job site, or a lubricant sample can be saved and tested in the presence of the equipment owner.

- Lubricant Sample Used for Test Since lubricant is the scavenger, it gives the best indication of acid in the system. Less than an ounce of lubricant is required.
- Quick to Use Once the lubricant sample is obtained...it will take only minutes to perform the test. Simply mix the solutions and lubricant to be tested. Shake, and the resulting color tells the complete story.
- Cost The cost of the test is very inexpensive, regardless of which kit is used. The TA-1 Kit is more convenient, but for repeated testing the AK-3 is less costly.

Both the TA-1 and AK-3 Kits are normally used on a "pass or fail" basis. If the user desires an indication of the relative **amount** of acid in the lubricant, then the AK-3 Kit should be selected.

For complete information consult your nearest Sporlan Wholesaler or email europecold@parker.com and request Bulletin 40-10.

MOISTURE AND LIQUID INDICATOR

8 Outstanding Benefits

- One Indicator for Refrigerants 134a, 22, 404A, 407C, 410A, 502 and 507. The See-All Moisture and Liquid Indicator provides a true moisture indication for Refrigerants 134a, 22, 404A, 407C, 410A and 507. The See-All[®] is also suitable for Refrigerant 409A. The dark green indicates dry and a bright yellow indicates wet. The one indicator avoids the confusion found in models with two elements. You cannot pick the wrong element when checking the moisture content of the system.
- 2. Reliable and Accurately calibrated color change points. The See•All Moisture and Liquid Indicator is accurately calibrated in parts per million of moisture for each refrigerant. All moisture indicators change color on the basis of relative saturation of the refrigerant. Therefore, liquid line temperature must be considered if an accurate calibration is to be obtained. For easy comparison, a color chart is part of the label.
- 3. Color Changes are easily distinguished and reversible. The indicator's color differs so widely between WET and DRY conditions that there is no possibility of confusion between the two. Colors will reverse as often as moisture concentration in the system changes.

- 4. Large full view sightglass. The See-All Moisture and Liquid Indicator has an extra large crystal clear sightglass for viewing the refrigerant. Bubbles indicate a shortage of refrigerants or a restriction in the liquid line.
- **5. Indicator protected from discoloration and dirt.** The indicator is protected by a filter pad and screen. This prevents washing of the indicator by the refrigerant and protects it from system contamination and turbulence.
- **6. Replaceable indicator element.** The color indicator paper can be changed on the new fused glass models without removing the **See-All** from the line. Replacement is through the bottom (see SA-14SU below). Request the K-SA-4 kit.
- 7. Disassembly of the smaller sizes not required. The extended steel fittings on solder models in the smaller sizes make it unneccesary to disassemble for installation since steel conducts only one eighth as much heat as copper.
- 8. A double duty plastic cap is supplied to keep the glass free from dust, dirt and grease. It also permits the service engineer to use his own discretion concerning instructions to his customers on observing the See-All Moisture and Liquid Indicator.

Specifications

CONNEC-	MAL	E FLARE		& MALE ARE		FLARE x 'EL NUT		L NUT X El NUT		FLARE X EL NUT		L NUT x OLDER	ODF S	OLDER
SIZES	TYPE NO.	OVERALL LENGTH mm												
1/4	SA-12	73	SA-12FM	65	—	—	—	—	—	—	—	—	SA-12S	117
3/8	SA-13	86	SA-13FM	75	SA-13U	92	SA-13UU	100	SA-13FU	81	SA-13SU	106	SA-13S	117
1/2	SA-14	97	SA-14FM	87	SA-14U	105	SA-14UU	114	SA-14FU	95	SA-14SU	117	SA-14S	124
5/8	SA-15	105	—	—	SA-15U	113	SA-15UU	121	—	—	SA-15SU	124	SA-15S	124
7/8	—		—	—	—	—	—		—		—	—	SA-17S	160
1-1/8	—		—		—	—			—		—		SA-19S	100
1-3/8	—	_			_	—			_				①SA-211	
1-5/8	—	_			_	—			_				①SA-213	202
2-1/8	—	—	—	—	—	—	—	—	—		—	—	①SA-217	

UL and ULc Listed - Guide SEYW-File No. SA3182

Maximum Rated Pressure for all models is 45 bar. Overall width is: 33 mm for 1/4" and 3/8" sizes, 40 mm for 1/2" and 5/8 sizes, and 35 mm for 7/8" and 1-1/8" sizes. Most solder connections can be used as male fittings as well as female fittings. The 1/4" ODF is 3/8" ODM, the 3/8" ODF is 1/2" ODM, the 1/2" ODF is 5/8" ODM, and the 5/8" ODF is 3/4" ODM. Models with female flare and/or swivel nut connections are supplied with a copper gasket in the fitting.

These models have copper connections and feature a removable element cartridge – for replacement cartridge specify AC-20.

Moisture Content PPM

SEE•ALL	LIQUID		22	R-1	34a	R-404A	& R-507	R-407C	R-410A
SHOWS	LINE 🗭 TEMP.	25°C	40°C	25°C	40°C	25°C	40°C	25°C	25°C
Green DRY		Below 30	Below 45	Below 50	Below 80	Below 15	Below 30	Below 120	Below 75
Chartreuse	e CAUTION	30-90	45-130	50-200	80-225	15-90	30-140	120-280	75-150
Yellow WE	T	Above 90	Above 130	Above 200	Above 225	Above 90	Above 140	Above 280	Above 150

Note: Change or add Catch-All Filter-Drier when paper turns from green to chartreuse.

Suction Filters with the optional relief feature

Design Benefits

- Protects the compressor from dirt
- A relief device opens if the filter plugs
- Suitable for use with all brazing alloys
- Maximum corrosion resistance
- Full flow design for low pressure drop
- Complete line of sizes

SF-287-T

Sporlan offers an exclusive concept in Suction Filter design – a filter with an optional relief feature. When flow is in **one direction**, the bypass relief feature is active. If the pressure drop across the element becomes excessive the bypass relief will open slightly to maintain sufficient gas flow and assure proper cooling of the hermetic motor.

When the Suction Filter is installed with flow in the **opposite direction**, the bypass relief feature is inactive and will never open, regardless of the increase in pressure drop.

The "-T" in the type number indicates that these models are equipped with an access valve to permit pressure drop readings. The access valve will be operational provided the Suction Filters are installed with the bypass feature inactive.

T	/PE	COMMENTIONS		D	MENSIONS - mm	
WITHOUT Access Valve	WITH Access Valve	CONNECTIONS Inches	FILTER AREA cm ²	OVERALL LENGTH	SOCKET DEPTH	SHELL DIAMETER
	Т	ypes with bypass re	elief feature (Bi-c	lirectional Flow)		
SF-283F	_	3/8 SAE Flare		223	—	
—	SF-285-T	5/8 ODF Solder		212	16	
—	SF-286-T	3/4 ODF Solder	181	223	18	
—	SF-287-T	7/8 ODF Solder		227	19	76
—	SF-289-T	1-1/8 ODF Solder		242	23	/0
—	SF-489-T	1-1/8 ODF Solder		315	23	
—	SF-4811-T	1-3/8 ODF Solder	310	333	25	
—	SF-4813-T	1-5/8 ODF Solder		341	28	
	Тур	es without bypass r	elief feature (Sin	gle Flow Direction	1)	
SF-114	_	1/2 ODF Solder		111	13	
SF-114F	_	1/2 SAE Flare	71	133		F1
SF-115	_	5/8 ODF Solder	71	117	16	51
SF-115F	_	5/8 SAE Flare		141	—	
_	SF-6417-T	2-1/8 ODF Solder	2502	270	31	101
—	SF-6421-T	2-5/8 ODF Solder	2503	278	35	121

Listed by Underwriters' Laboratories, Inc. – Guide SMGT – File No. SA-1756A & B.

Selection Recommendations

TYPE N	UMBER				FL	OW CA	PACIT	/ IN kW	EVAP (ORATO	RTEMP	ERATU	RE				
				5°C			-5°C			-20°C		-3	0 C	-4()°C		IOMINAL SYSTEM
without	with	CONNEC-						PRESSU	RE DR	0 P – ba	r						RSEPOWER
Access	Access	TIONS	0.20	0.14	0.20	0.14	0.10	0.14	0.10	0.07	0.10	0.	07	0.	03		
Valve	Valve	Inches					_	REF	RIGER/	ANT		_				REF	RIGERANT
			22	134a	407C	22	134a	404A, 507	22	134a	404A, 507	22	404A, 507	22	404A, 507	22, 407C	134a, 404A, 409A, 507
SF-114	—	1/2 ODF	8.4	5.3	8.4	5.3	3.5	5.3	3.9	2.1	3.5	2.5	2.1	1.1	1.1	1	1/2
SF-114F	—	1/2 SAE	7.4	4.6	7.4	4.9	3.2	4.6	3.2	1.8	3.2	2.1	1.8	1.1	1.1	1	1/2
SF-115	—	5/8 ODF	14.4	9.1	14.4	9.5	6.0	9.1	6.3	3.9	6.0	4.2	3.9	2.1	2.1	2	1
SF-115-F	—	5/8 SAE	13.0	8.1	13.0	8.4	5.3	8.1	5.6	3.2	5.3	3.5	3.2	1.8	1.8	2	1
SF-283F		3/8 SAE	7.4	4.2	7.0	4.6	2.8	4.2	3.2	1.8	2.8	1.4	1.8	1.1	1.1	1	1/2
	SF-285-T	5/8 ODF	22.5	14.1	21.8	14.1	9.5	13.7	10.2	6.0	9.5	6.3	6.0	3.5	3.2	4	1-1/2
	SF-286-T	3/4 ODF	30.2	17.9	28.5	17.6	12.0	17.9	12.7	7.4	12.0	7.7	7.4	4.2	3.9	5	1-1/2
	SF-287-T	7/8 ODF	39.0	24.6	39.7	25.3	16.2	24.6	17.9	9.8	16.2	10.9	10.2	5.3	5.3	7-1/2	3
	SF-289-T	1-1/8 ODF	52.1	32.4	51.3	33.1	21.1	32.4	23.2	13.0	21.5	14.1	13.4	7.4	7.0	7-1/2	5
	SF-489-T	1-1/8 ODF	56.3	34.8	55.2	35.2	22.9	34.5	24.6	13.7	22.9	15.1	14.4	7.7	7.4	10	5
	SF-4811-T	1-3/8 ODF	64.7	39.4	63.3	40.1	25.7	39.4	27.8	15.5	26.0	16.9	16.2	8.8	8.4	12	5
	SF-4813-T		76.0	46.8	74.9	47.5	30.6	46.8	33.1	18.3	30.6	19.7	19.0	10.2	9.8	15	7
	SF-6417-T	2-1/8 ODF	320	179	313	200	109	185	125	57.7	112	71.4	62.6	32.7	27.8	55	20
	SF-6421-T	2-5/8 ODF	419	221	383	247	136	227	155	72.5	139	90.0	78.4	41.5	35.2	60	30

Notes: Maximum rated pressure for SF-11, SF-28 and SF-48 is 27.5 bar. The SF-64 series is rated for 34.5 bar. All ratings are in accordance with ARI Standard 730.

REPLACEABLE Suction Filters

The Replaceable Suction Filter shell, used with RPE-48-BD pleated filter element, is designed to be installed in the suction line of new systems to remove circulating contaminants.

Design Benefits

- High flow capacity
- Corrosion resistant coating on shell
- Can be used with desiccant cores for clean-up after burnout
- Various fitting sizes up to 3-1/8" line size
- Access valve supplied for pressure drop measurement or charging

How It's Used

Sporlan Replaceable Suction Filters are installed in the suction line of refrigeration or air conditioning systems to remove contaminants that may be in the system at startup. The Replaceable Suction Filter has large fittings permitting the use of a small shell on a system with large line sizes, resulting in considerable economy. The angle construction is suitable of flow in either direction, which results in easy installation even on compact racks.

The Replaceable Suction Filters should

be used with cores for cleaning up a system after a hermetic motor burnout. Select the RC-4864, RC-4864-HH or RCW-48 replaceable cores. After cleanup, install RPE-48-BD elements in the shells.

Selection

The table below gives information for choosing the proper model for a given system. The filter elements are supplied in hermetically sealed metal cans.

For flow capacity WITH CORES, see page 35.

	s s			•				OW CA									lle es	4	BTH
	TIONS es Lder		5'	°C			-5°C	UNAT		-20°C	TONE		-30°C		-4()°C	NUMBER OF Filter Elements		LENGTH
TYPE	NNEC Inche DF SOI						P	RESSU	RE DR	0P – b	ar						BER	ER Al cm ²	
	CONNEC Incl ODF S(0.21	0.14	0.21	0.21	0.14	0.10	0.14	0.10	0.07	0.10	0.07	0.04	0.07	0.04	0.04	올프필	FILTER	OVERALL
	<u> </u>							REF	RIGER.	ANT							Z "	Ξ	E
		22	134a	407C	410A	22	134a	404A	22	134a	404A	22	134a	404A	22	404A			6
RSF-487-T	7/8	42.2	24.6	38.7	48.5	24.6	17.6	24.6	17.6	10.6	14.1	10.6	3.52	10.6	3.52	3.52			236
RSF-489-T	1-1/8	73.9	38.7	63.3	77.4	45.7	24.6	38.7	31.7	14.1	24.6	17.6	7.03	14.1	10.6	7.03			238
RSF-4811-T	1-3/8	95.0	56.3	91.4	113	59.8	35.2	56.3	38.7	21.1	35.2	24.6	10.6	21.1	10.6	10.6	One	25.02	244
RSF-4813-T	1-5/8	116	70.3	116	144	73.9	45.7	70.3	49.2	28.1	45.7	28.1	14.1	28.1	14.1	14.1	RPE-48-BD	2503	244
RSF-4817-T	2-1/8	155	95.0	155	193	98.5	59.8	95.0	63.3	35.2	59.8	38.7	21.1	38.7	17.6	17.6			238
RSF-4821-T	2-5/8	204	123	204	253	127	80.9	123	84.4	45.7	80.9	49.2	24.6	49.2	24.6	24.6			248
RSF-9611-T	1-3/8	106	63.3	102	127	70.3	49.2	63.3	49.7	28.1	42.2	31.7	10.6	28.1	17.6	14.1			385
RSF-9613-T	1-5/8	141	77.4	134	165	95.0	63.3	84.4	66.8	38.7	56.3	42.2	17.6	35.2	24.6	21.1	Ŧ		385
RSF-9617-T	2-1/8	169	102	165	207	106	66.8	102	70.3	38.7	63.3	45.7	21.1	38.7	24.6	24.6	Two RPE-48-BD	5006	380
RSF-9621-T	2-5/8	229	141	229	285	144	91.4	141	95.0	52.8	91.4	56.3	28.1	56.3	28.1	28.1	NFL-40-DD		392
RSF-9625-T	3-1/8	317	193	313	390	200	123	193	130	70.3	123	87.9	42.2	77.4	38.7	35.2			384

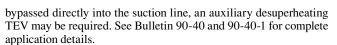
Listed by Underwriters' Laboratories, Inc. Guide SMGT File No. SA-1756A & B. RSF shells have a 34.5 bar M.R.P. rating. Note: Use R-404A ratings for R-507.

Ratings are in accordance with ARI Standards 730. Flow capacity (kW) with cores is approximately 40% of the above values.

DISCHARGE BYPASS VALVES

SHGB-15 🍵

ADR


The Sporlan line of discharge bypass valves are designed to provide an economical method of compressor capacity control in place of cylinder unloaders or to handle unloading requirements below the last step of cylinder unloading. These modulating control valves automatically bypass the required amount of discharge gas to the low side to maintain the desired minimum evaporator pressure. The valves are applicable on any refrigeration or air conditioning system that operates during periods of low load, which can result in coil icing or short cycling. These valves respond to downstream pressure changes and open when the evaporator pressure falls below the valve setting. At normal loads and evaporator conditions, the valve remains closed and the system operates in a conventional manner.

The DR line of valves consists of three basic types of valves: the adjustable models, the adjustable remote bulb models, and the non-adjustable models (contact Sporlan for information).

The SHGB valves are adjustable and pilot operated with a soldenoid stop feature that eliminates the need for a hot gas solenoid valve. They were developed for use on larger capacity systems.

Application

The discharge bypass valve is normally applied in a branch line off the discharge line. To allow system pump down control, a solenoid valve or hand valve must be installed upstream of the discharge DR type bypass valves. The bypassed hot gas can enter the low side at several locations; however, two of the possible locations are preferred because of superior operating performance: into the side connection of a Sporlan side connection distributor or directly into the suction line. By using the side connection distributor method, the system TEV will act as a desuperheating valve to keep the compressor suction temperature below the recommended maximum temperature published by the compressor manufacturer. When the hot gas is

Selection and Capacity Ratings

The capacities given in the table below are **valve** hot gas capacities and not the capacities of the system on which the valve is to be applied. To select a valve, first determine the compressor capacity at the minimum allowable evaporating temperature. Then the discharge bypass valve must supply the difference between this compressor capacity and the minimum evaporator load at which the system is to be operated. The valve pressure setting will be that pressure at which the bypass valve must start to open.

Connections – (Standard Connections are in **BOLD** type. Nonstandard connections may be subject to availability and/or require a minimum quantity).

ADRI(E)-1-1/4, – 3/8" ODF Solder

ADRS(E)-2 – 3/8", 1/2", 5/8" ODF Solder or 3/8", 1/2", 5/8" SAE Flare

ADRP(E)-3 – 1/2", 5/8", ODF Solder or 1/2", 5/8" SAE Flare ADRHE-6 & DRHE-6 – 5/8", 7/8", 1-1/8" ODF Solder SHGB(E)-8 – 7/8" ODF, 1-1/8" ODF Solder SHGB(E)-15 – 1-1/8", 1-3/8" ODF Solder

HGB(E)-5 – 3/8, 1/2, 5/8 ODF Solder HGB(E)-8 – 7/8, 1-1/8 ODF Solder Note: Refer to Bulletin R-410A for capacities.

Valves with ODF solder connections are supplied standard with 1/4" ODF external equalizer, 1/4" SAE Flare external equalizer available on special order. Pilot operated models are supplied with 1/4" SAE external equalizer.

Capacities – kW

Capacities based on 3.3°C evaporator temperature change from closed to rated opening (does not apply to pilot operated models), discharge temperature 17°C above isentropic compression, 38°C condensing temperature, 0°C subcooling, 14°K superheat at the compressor and includes both the hot gas bypassed and liquid refrigerant for desuperheating, regardless of whether the liquid is fed through the system thermostatic expansion valve or auxiliary desuperheating thermostatic expansion valve.

	MINIMUM						VA	LVET	/PE & A	DJUS	TMENTR	ANGE (b	ar)			
REFRIGERANT	ALLOWABLE EVAPORATOR TEMP. °C		DRI-1-1 Drie-1-	1/4	ASR		ADF ADR	PE-3	ADR			ustable " Mod	lel)*			SHGB-15 SHGBE-15
		0/3.79	0/5.17	0/6.90	0/2.07	0/5.52	0/2.07	0/5.52	0/2.07	0/5.52	1.72/2.41	2.21/3.03	3.79/4.83	4.48/5.52	0/6.90	0/5.17
	5	—	2.04	1.86	—	12.3	—	21.1	—	32.2		—	69.7	—	55.3	204
22	-5	1.55	2.25	1.90	—	12.5	—	22.0	—	34.8	—	—	59.5	—	56.0	218
22	-15	2.22	2.11	1.72	13.7	12.9	26.0	23.2	48.9	38.3	—	—	—	—	57.0	232
	-25	2.08	1.76	1.55	13.2	12.8	26.2	23.4	49.6	38.7	—	—	—	—	57.0	243
	5	1.41	1.51	1.19	—	9.40	—	17.4	—	32.9	33.9	—	—	—	38.3	144
134a	-5	1.44	1.37	1.12	9.15	8.59	17.4	15.5	32.9	25.5	29.2	—			38.3	151
	-15	1.34	1.09	0.98	8.66	—	17.2	—	33.1	—	—	—		—	38.7	162
	5		—	1.94	—		_		—		_	—		_	61.6	
4044	-5		2.36	2.11	—	13.7	—	23.6	—	36.6	—	—		75.3	62.3	225
404A	-15	2.35	2.50	1.97	—	14.1	—	25.2	_	41.2	—	—		—	63.0	229
	-25	2.39	2.15	1.79	14.7	14.1	28.4	25.6	53.8	42.6		_			63.0	229
	5		2.74	2.29		14.9	—	26.4	—	42.6			80.5		65.4	260
4070	-5	2.15	2.74	2.22		14.9	—	26.4	—	42.6		67.9			65.8	264
407C	-15	2.60	2.39	1.97	15.9	15.2	30.4	27.5	57.3	45.7		_		_	66.5	267
	-25	2.39	1.97	1.76	15.2	14.9	30.4	27.1	58.0	45.4		_			67.2	271
	5			1.86					—	—		_			61.2	
507	-5	—	2.28	2.07	—	13.6	—	23.2	—	35.9	—	—			62.3	225
507	-15		2.50	2.00		13.8	_	24.9	—	40.5		_		_	62.6	225
	-25	2.43	2.18	1.83	14.7	14.1	28.2	25.5	53.5	42.2	—	—			63.0	229

*These models applicable on air conditioning systems only. For complete information consult your nearest Sporlan Wholesaler or email europecold@parker.com and request Bulletin 90-40.

CRANKCASE PRESSURE REGULATING VALVES

LISTED or

Recognized

Crankcase Pressure Regulating Valves are designed to prevent overloading of the compressor motor by limiting the crankcase pressure to a predetermined maximum value during and after a defrost cycle or a normal shutdown period. These valves automatically throttle the vapor flow from the evaporator until the compressor can handle the load.

Sporlan manufactures five adjustable direct acting models...CRO-4, CRO-6, CROT-6, CRO-10 and CROT-10...all models respond only to their outlet pressure and modulate to prevent the suction pressure at the compressor from rising above the valve

setting. Since these valves are adjustable, the setting may be altered to suit the specific system requirements.

Selection and Capacity Ratings

The ratings for these valves vary depending on these items: design suction pressure after pulldown, maximum allowable suction pressure recommended by the compressor or unit manufacturer (this is the valve setting), and pressure drop across the valve. The difference between the design suction pressure and the valve setting determines how much of the valve stroke is used. Therefore, the valve setting should be kept as high as possible without exceeding the recommendation of the compressor or unit manufacturer. Once this information is available, the correct CRO can be selected from the data below.

Connections – (Standard Connections are in **BOLD** type). **CRO-4** – 3/8", 1/2" ODF Solder and 3/8", 1/2" SAE Flare **CRO-6**, ***CROT-6** – 5/8", 7/8", 1-1/8" ODF Solder and 1/2", 5/8" SAE Flare. **CRO-10**, ***CROT-10** – 7/8", 1-1/8", **1-3/8**" ODF Solder. *"T" indicates access value on inlet connection.

Installation

Crankcase pressure regulating valves are installed in the suction line between the evaporator and compressor, and downstream of any other controls or accessories. When installing CRO's with solder type connections, the internal parts should be protected by wrapping the valve with a wet cloth.

CRO-6 & CRO-10 are listed by Underwriters Laboratories, Inc. – Guide – SFJQ – File No. SA5460 and Canadian Standards Association – Certification Record No. LR-19953. CRO-4 is a recognized component UL Guide No. SFJQ8, File Number SA5460, also a recognized component in Canada.

CRO – Valve Nomenclature/Ordering Instructions

	,			
CRO	т	10	0/60	1-1/8 ODF
Valve Type Close on Rise of Outlet Pressure	Access Valve on Inlet Connection CROT-6 or CROT-10	Port Size in Eighths of an Inch	Adjustment Range - psig See specifications for available adjustment ranges	Connections - ODF Solder or SAE Flare

Capacities – kW

Capacities based on 38°C condensing temperature, 6°K superheat, 0°C subcooling, and 0.14 bar pressure drop across valve.

TYPE and	DESIGN	SATURATED	<u> </u>			22			DESIGN	SATURATED			R-1			
ADJUSTMENT	EVAP.	SUCTION		VALV	E SET	TING –	- barg		EVAP.	SUCTION		VALV	E SET	FING –	barg	
RANGE	TEMP. °C	PRESSURE – bar (Reference)	0.7	1.4	2.1	2.8	3.5	4.2	TEMP. °C	PRESSURE – bar (Reference)	0.7	1.4	2.1	2.8	3.5	4.2
000 4	-40	0.0	0.61	0.61	—	—	—	—	-25	0.0	0.59	0.59	—	—	—	—
CRO-4 0/20 psig	-35	0.3	0.61	0.70	—	—	—	—	-20	0.3	0.59	0.69	—	—	—	—
0/20 psig 0/1.4 barg	-30	0.6	0.53	0.80	—	—	—	—	-15	0.6	0.52	0.79	—	—	—	—
0/1.4 burg	-25	1.0	—	—	—	—	—	—	-10	1.0		0.79	—	—	—	
CRO-4	-40	0.0	0.48	0.61	0.61	0.61	—	—	-20	0.3	0.49	0.64	0.69	0.69		
0/50 psiq	-30	0.6	0.50	0.67	0.80	0.80	—	—	-15	0.6	0.49	0.66	0.79	0.79	—	
0/3.4 barg	-25	1.0	—	0.66	0.85	0.91	—	—	-5	1.4	_	—	0.83	1.02	—	—
0/0.4 burg	-15	1.9	—	—	0.76	0.99	—	—	5	2.5	—		—	0.91	—	
CRO-4	-40	0.0	0.46	0.48	0.61	0.61	0.61	0.61	-15	0.6	0.49	0.62	0.76	0.79	0.79	0.79
0/75 psig	-30	0.6	0.50	0.64	0.77	0.80	0.80	0.80	-10	1.0	—	0.64	0.78	0.90	0.90	0.90
0/5.2 barg	-15	1.9	—	—	0.75	0.93	1.12	1.14	-5	1.4	—	—	0.79	0.95	1.02	1.02
0, 0.2 buig	-10	2.5	—	—	—	0.86	1.07	1.27	5	2.5	—		—	0.89	1.10	1.28
	-40	0.0	1.62	2.54	3.45	4.27	4.27	—	-15	0.6	1.21	2.35	3.50	4.65	5.49	—
CRO(T)-6 0/60 psig	-30	0.6	—	2.41	3.57	4.73	5.58	—	-10	1.0	_	2.03	3.32	4.61	5.90	—
0/00 psig 0/4.1 barg	-15	1.9	—	—	2.07	3.67	5.27	—	-5	1.4	—	—	2.90	4.34	5.79	—
0/4.1 burg	-5	3.2	—	—	—	—	2.99	—	5	2.5	—	—	—	—	4.55	—
000(T) 40	-40	0.0	5.29	9.79	9.79	9.79	9.79	—	-15	0.6	_	7.83	12.3	12.3	12.3	—
CRO(T)-10 0/60 psig	-30	0.6	—	7.95	12.5	12.5	12.5	—	-10	1.0	_	4.63	12.7	13.9	13.9	—
0/60 psig 0/4.1 barg	-15	1.9	—	—	2.16	12.1	17.3	—	-5	1.4	—	—	8.72	15.6	15.6	—
0/4.1 burg	-5	3.2	—	—	—	—	5.13	—	5	2.5	—	—	—	—	16.2	—
						TING -	- barg						E SET		barg	
			2.7	3.4	4.1	4.8	5.5	6.2			2.7	3.4	4.1	4.8	5.5	6.2
	-10	2.5	2.22	3.41	4.60	5.79	6.98	8.17	-10	1.0	3.40	4.27	5.14	6.00	6.24	6.24
CRO(T)-6	-5	3.2	—	2.53	3.84	5.15	6.46	7.76	-5	1.4	—	4.24	5.21	6.19	7.05	7.05
30/110 psig 2.1/7.6 barg	0	4.0	—	—	2.68	4.11	5.55	6.98	0	1.9	—	—	5.10	6.18	7.27	7.91
2.1/1.0 buly	5	4.8	—	—	—	—	4.16	5.73	5	2.5	—	—	—	5.94	7.14	8.35
000(7) (-	-10	2.5	1.78	9.24	16.7	19.1	19.1	19.1	-10	1.0	13.2	13.9	13.9	13.9	13.9	13.9
CRO(T)-10	-5	3.2	—	2.31	10.5	18.7	21.1	21.1	-5	1.4	_	15.6	15.6	15.6	15.6	15.6
30/110 psig 2.1/7.6 barg	0	4.0	—		1.75	10.7	19.7	23.1	0	1.9	_	—	17.4	17.4	17.4	17.4
2.1/ 7.0 bary	5	4.8	—		_	—	9.48	19.3	5	2.5		—		19.4	19.4	19.4

For complete information consult your nearest Sporlan Wholesaler or email europecold@parker.com and request Bulletin 90-10.

CRANKCASE PRESSURE REGULATING VALVES

Capacities – kW Capacities based on 38°C condensing temperature, 6°K superheat, 0°C subcooling, and 0.14 bar pressure drop across valve.

TYPE and	DESIGN	SATURATED			R-4	04A			DESIGN	SATURATED			R-4	07C		
ADJUSTMENT	EVAP.	SUCTION		VALV	E SET	TING -	- barg		EVAP.	SUCTION		VALV	E SET	TING -	-barg	
RANGE	TEMP. °C	PRESSURE – bar	0.7	1.4	2.1	2.8	3.5	4.2	TEMP. °C	PRESSURE – bar	0.7	1.4	2.1	2.8	3.5	4.2
		(Reference)								(Reference)	0.7	1.7				
CRO-4	-40	0.3	0.41	0.47					-40	-0.15		0.57	—		—	
0/20 psig	-35 -30	0.6 1.0	0.35	0.55					-35 -30	0.1 0.4	0.57	0.57				
0/1.4 barg	-30	1.5		0.55		_			-30	0.4	0.55	0.67 0.77				
	-25	0.3	0.34	0.44	0.47	0.47			-25	0.1	0.45	0.57	0.57	0.57		
CRO-4	-40	1.0	0.34	0.44	0.59	0.47			-30	0.4	0.45	0.61	0.67	0.57		
0/50 psig	-25	1.5		0.40	0.58	0.73			-25	0.4	0.47	0.63	0.07	0.07		_
0/3.4 barg	-15	2.6		_	0.30	0.64			-15	1.6		0.05	0.77	0.98		
	-40	0.3	0.33	0.41	0.47	0.04	0.47	0.47	-35	0.1	0.42	0.52	0.57	0.57	0.57	0.57
CRO-4	-30	1.0		0.45	0.55	0.64	0.64	0.64	-30	0.4	0.45	0.52	0.67	0.67	0.67	0.67
0/75 psig	-15	2.6				0.63	0.78	0.93	-15	1.6			0.74	0.90	1.00	1.00
0/5.2 barg	-10	3.3			_		0.71	0.88	-10	2.2				0.87	1.06	1.13
	-40	0.3	1.00	1.70	2.39	3.09	3.29		-35	0.1	1.47	2.33	3.19	3.99	3.99	
CRO(T)-6	-30	1.0		1.40	2.31	3.23	4.14	—	-30	0.4		2.34	3.32	4.30	4.64	_
0/60 psig	-20	2.0				2.57	3.75		-15	1.6	_		2.54	3.96	5.37	_
0/4.1 barg	-10	3.3		_	_		_		-5	2.8	_			_	3.78	_
	-40	0.3	2.33	6.67	7.47	7.47	7.47	_	-35	0.1	4.71	9.17	9.17	9.17	9.17	_
CRO(T)-10	-30	1.0		2.97	8.67	9.86	9.86		-30	0.4		9.03	10.5	10.5	10.5	
0/60 psig 0/4.1 barg	-20	2.0			_	8.23	12.7		-15	1.6	_		6.61	15.3	15.3	_
0/4.1 baiy	-10	3.3	—	—	_	—	—	—	-5	2.8			_		11.5	—
				VALV	E SET	TING -	- barg					VALV	E SET	TING -	-barg	
			2.7	3.4	4.1	4.8	5.5	6.2			2.7	3.4	4.1	4.8	5.5	6.2
	-15	2.6	1.54	2.43	3.32	4.21	5.09	5.98	-10	2.2	2.57	4.58	6.16	7.74	7.78	7.78
CRO(T)-6	-10	3.3			2.75	3.75	4.74	5.74	-5	2.8		3.01	4.19	5.38	6.57	7.75
30/110 psig	-5	4.1				2.94	4.05	5.16	0	3.6			3.31	4.62	5.94	7.26
2.1/7.6 barg	0	5.0			_		2.94	4.17	5	4.5				3.39	4.85	6.30
	-15	2.6		6.21	11.8	14.3	14.3	14.3	-10	2.2	5.47	17.1	17.1	17.1	17.1	17.1
CRO(T)-10	-10	3.3			6.98	13.2	16.0	16.0	-5	2.8	_	6.74	14.2	19.1	19.1	19.1
30/110 psig	-5	4.1		_	_	6.85	13.8	17.9	0	3.6	_		7.04	15.3	21.2	21.2
2.1/7.6 barg	0	5.0		_		_	5.41	13.1	5	4.5	_	_	_	5.91	15.1	23.5
	DESIGN	SATURATED			R-4	09A			DEGLONI				R-!	507		
TYPE and									DESIGN	SATURATED				107		
AD HISTMENT	EVAP.	SUCTION		VALV	E SET		- barg		EVAP.	SATURATED SUCTION		VALV		TING -	-barg	
ADJUSTMENT RANGE	TEMP.	PRESSURE – bar	0.7		E SET	TING -		12	EVAP. TEMP.	SUCTION PRESSURE – bar	07		E SET	TING -		12
	TEMP. °C	PRESSURE – bar (Reference)	0.7	1.4	E SET 2.1	TING - 2.8	3.5	4.2	EVAP. TEMP. °C	SUCTION PRESSURE – bar (Reference)	0.7	1.4	'E SET 2.1	TING - 2.8	-barg 3.5	4.2
RANGE	TEMP. °C -25	PRESSURE – bar (Reference) 0.0	0.60	1.4 0.60	2.1	TING -		4.2	EVAP. TEMP. °C -40	SUCTION PRESSURE – bar (Reference) 0.4	0.7 0.39	1.4 0.47	E SET	TING -		4.2
CRO-4	TEMP. °C -25 -20	PRESSURE – bar (Reference) 0.0 0.3	0.60 0.61	1.4 0.60 0.70	/E SET 2.1 	TING - 2.8 —	3.5 		EVAP. TEMP. °C -40 -35	SUCTION PRESSURE – bar (Reference) 0.4 0.7	0.39	1.4 0.47 0.55	/E SET 2.1 	TING - 2.8 	3.5 	
RANGE	TEMP. °C -25 -20 -15	PRESSURE – bar (Reference) 0.0 0.3 0.6	0.60	1.4 0.60 0.70 0.80	/E SET 2.1 	TING - 2.8	3.5 — —		EVAP. TEMP. °C -40 -35 -30	SUCTION PRESSURE – bar (Reference) 0.4 0.7 1.1		1.4 0.47	'E SET 2.1	TING - 2.8		
CRO-4 0/20 psig	TEMP. °C -25 -20 -15 -10	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0	0.60 0.61 0.54 —	1.4 0.60 0.70 0.80 0.82	/E SET 2.1 — —	TING - 2.8 	3.5 — — —		EVAP. TEMP. °C -40 -35 -30 -25	SUCTION PRESSURE – bar (Reference) 0.4 0.7 1.1 1.6	0.39	1.4 0.47 0.55 0.50 —	2.1 	TING - 2.8 — —	3.5 — — —	
CRO-4 0/20 psig 0/1.4 barg	TEMP. °C -25 -20 -15 -10 -20	PRESSURE - bar (Reference) 0.0 0.3 0.6 1.0 0.3	0.60 0.61 0.54 0.50	1.4 0.60 0.70 0.80 0.82 0.65	2.1 0.70	11NG - 2.8 0.70	3.5 — — — —		EVAP. TEMP. °C -40 -35 -30 -25 -40	SUCTION PRESSURE – bar (Reference) 0.4 0.7 1.1 1.6 0.4	0.39 — — 0.33	1.4 0.47 0.55 0.50 — 0.43	2.1 2.1 — — 0.47	11NG - 2.8 0.47	3.5 — — — —	
CRO-4 0/20 psig	TEMP. °C -25 -20 -15 -10 -20 -15	PRESSURE - bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6	0.60 0.61 0.54 —	1.4 0.60 0.70 0.80 0.82	E SET 2.1 — — 0.70 0.80	2.8 2.8 0.70 0.80	3.5 — — — — — —		EVAP. TEMP. °C -40 -35 -30 -25 -40 -30	SUCTION PRESSURE – bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1	0.39	1.4 0.47 0.55 0.50 —	E SET 2.1 — — — 0.47 0.57	2.8 0.47 0.64	3.5 — — — — — —	
CRO-4 0/20 psig 0/1.4 barg CRO-4	TEMP. °C -25 -20 -15 -10 -20 -15 -5	PRESSURE - bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4	0.60 0.61 0.54 0.50	1.4 0.60 0.70 0.80 0.82 0.65	2.1 0.70	2.8 0.70 0.80 1.02	3.5 — — — — — — —		EVAP. TEMP. °C -40 -35 -30 -25 -40 -30 -25	SUCTION PRESSURE – bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6	0.39 — — 0.33	1.4 0.47 0.55 0.50 — 0.43	2.1 2.1 — — 0.47	11NG - 2.8 0.47	3.5 — — — —	
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig	TEMP. °C -25 -20 -15 -10 -20 -15 -5 5	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4	0.60 0.61 0.54 0.50 0.51 	1.4 0.60 0.70 0.80 0.82 0.65 0.68 	/E SET 2.1 — — 0.70 0.80 0.85 —	2.8 2.8 0.70 0.80 1.02 0.94	3.5 — — — — — — — — — — —		EVAP. TEMP. °C -40 -35 -30 -25 -40 -30 -25 -15	SUCTION PRESSURE – bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8	0.39 — — 0.33 — —	1.4 0.47 0.55 0.50 0.43 0.44 	E SET 2.1 0.47 0.57 0.55 	2.8 0.47 0.64 0.70 	3.5 — — — — — — — — — — — —	
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig	TEMP. °C -25 -20 -15 -10 -20 -15 -5 5 -15	PRESSURE - bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6	0.60 0.61 0.54 0.50 0.51 0.50	1.4 0.60 0.70 0.80 0.82 0.65 0.68 0.63	E SET 2.1 0.70 0.80 0.85 0.77	2.8 2.8 0.70 0.80 1.02 0.94 0.80	3.5 — — — — — — — — — — — — — — — — — — —	 0.80	EVAP. TEMP. °C -40 -35 -30 -25 -40 -30 -25 -15 -15 -40	SUCTION PRESSURE – bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4	0.39 — — 0.33	1.4 0.47 0.55 0.50 0.43 0.44 0.40	E SET 2.1 0.47 0.57 0.55 0.47	2.8 0.47 0.64 0.70 0.47	3.5 — — — — — — — — — — — — — — — — — — —	 0.47
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig	TEMP. °C -25 -20 -15 -10 -20 -15 -5 5 -15 -10	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0	0.60 0.61 0.54 0.50 0.51 0.50 	1.4 0.60 0.70 0.80 0.82 0.65 0.68 0.63 0.65	E SET 2.1 0.70 0.80 0.85 0.77 0.80	2.8 2.8 3 3 4 5 1 1 1 1 1 1 1 1 1 1	3.5 —— —— —— —— —— 0.80 0.90	 0.80 0.90	EVAP. TEMP. °C -40 -35 -30 -25 -40 -30 -25 -15 -40 -30	SUCTION PRESSURE – bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 1.1	0.39 — — 0.33 — —	1.4 0.47 0.55 0.50 0.43 0.44 	E SET 2.1 0.47 0.57 0.55 	2.8 2.8 0.47 0.64 0.70 0.47 0.64	3.5 — — — — — — — — — — — — — — — — — — —	 0.47 0.64
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4	TEMP. °C -25 -20 -15 -10 -20 -15 -5 5 -15 -15 -10 -5	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.6 1.4 2.4 0.6 1.0 1.4	0.60 0.61 0.54 0.50 0.51 0.50	1.4 0.60 0.70 0.80 0.82 0.65 0.68 0.63 0.65 	E SET 2.1 0.70 0.80 0.85 0.77 0.80 0.80 0.85	11NG - 2.8 0.70 0.80 1.02 0.94 0.80 0.90 0.97	3.5 —— —— —— —— —— 0.80 0.90 1.02	 0.80 0.90 1.02	EVAP. TEMP. °C -40 -35 -30 -25 -40 -25 -15 -15 -40 -30 -25 -15 -40 -30 -15	SUCTION PRESSURE – bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 1.6 2.8 0.4 1.1 2.8	0.39 — — 0.33 — —	1.4 0.47 0.55 0.50 0.43 0.44 0.40	E SET 2.1 0.47 0.57 0.55 0.47	2.8 0.47 0.64 0.70 0.64 0.64 	3.5 — — — — — — — — — — — — — — — — — — —	 0.47 0.64 0.89
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig	TEMP. °C -25 -20 -15 -10 -20 -15 -5 5 5 -15 -10 -5 5 5	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0 1.4 2.4	0.60 0.61 0.54 0.50 0.51 0.50 	1.4 0.60 0.70 0.80 0.82 0.65 0.68 0.63 0.65 	/E SET 2.1 0.70 0.80 0.85 0.77 0.80 0.80 0.80 	11NG - 2.8 0.70 0.80 1.02 0.94 0.80 0.90 0.97 0.91	3.5 — — — — — — — — — — — — — — — — — — —	 0.80 0.90 1.02 1.27	EVAP. TEMP. °C -40 -35 -30 -25 -40 -30 -25 -15 -40 -30 -15 -15 -10	SUCTION PRESSURE – bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 1.6 2.8 0.4 1.1 2.8 3.5	0.39 0.33 0.32 0.32 0.32	1.4 0.47 0.55 0.50 0.43 0.44 0.40 0.43 0.43 	E SET 2.1 0.47 0.57 0.55 0.47 0.53	TING - 2.8 0.47 0.64 0.70 0.47 0.64 	3.5 — — — — — — — — — — — — — — — — — — —	 0.47 0.64 0.89 0.82
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig 0/75 psig 0/5.2 barg CRO(T)-6	TEMP. °C -25 -20 -15 -10 -20 -15 -5 5 5 -15 -10 -5 5 5 -15 -15	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0	0.60 0.61 0.54 0.50 0.51 0.50 1.27	1.4 0.60 0.70 0.80 0.65 0.68 0.63 0.65 2.43	E SET 2.1 0.70 0.80 0.85 0.77 0.80 0.80 0.80 3.58	11NG - 2.8 0.70 0.80 1.02 0.94 0.80 0.90 0.97 0.91 4.74	3.5 	 0.80 0.90 1.02 1.27 	EVAP. TEMP. °C -40 -35 -30 -25 -40 -30 -25 -15 -40 -30 -15 -15 -10 -40 -40	SUCTION PRESSURE - bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 2.8 0.4 1.1 2.8 0.4 0.4	0.39 — — 0.33 — —	1.4 0.47 0.55 0.50 0.43 0.44 0.40 0.43 0.43 1.64	E SET 2.1 0.47 0.55 0.47 0.53 2.33	ING - 2.8 0.47 0.64 0.70 0.47 0.64 3.02	3.5 — — — — — — — — — — — — — — — — — — —	 0.47 0.64 0.89 0.82
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig 0/5.2 barg CRO(T)-6 0/60 psig	TEMP. °C -25 -20 -15 -10 -20 -15 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -10	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0	0.60 0.61 0.54 0.50 0.51 0.50 1.27 	1.4 0.60 0.70 0.80 0.65 0.65 0.63 0.65 2.43 2.12	E SET 2.1 0.70 0.80 0.85 0.77 0.80 0.80 0.80 3.58 3.42	ING - 2.8 0.70 0.80 1.02 0.94 0.90 0.97 0.91 4.74 4.71	3.5 	 0.80 0.90 1.02 1.27 	EVAP. TEMP. °C -40 -35 -30 -25 -40 -30 -25 -15 -40 -30 -15 -10 -40 -30 -30 -30	SUCTION PRESSURE - bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 2.8 3.5 0.4 1.1 2.8 3.5 0.4 1.1	0.39 0.33 0.32 0.32 0.32	1.4 0.47 0.55 0.50 0.43 0.44 0.40 0.43 1.64 1.27	E SET 2.1 0.47 0.57 0.55 0.47 0.53 2.33 2.18	ING - 2.8 0.47 0.64 0.70 0.47 0.64 3.02 3.08	3.5 — — — — — — — — — — — — —	 0.47 0.64 0.89 0.82
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig 0/75 psig 0/5.2 barg CRO(T)-6	TEMP. °C -25 -20 -15 -10 -20 -15 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 -5 -15 -10 -5 -5 -15 -10 -5 -5 -20 -25 -20 -15 -20 -20 -15 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4	0.60 0.61 0.54 0.50 0.51 0.50 1.27 1.27 	1.4 0.60 0.70 0.80 0.65 0.68 0.63 0.65 2.43	E SET 2.1 0.70 0.80 0.85 0.77 0.80 0.80 0.80 3.58	11NG - 2.8 0.70 0.80 1.02 0.94 0.80 0.90 0.97 0.91 4.74	3.5 		EVAP. TEMP. -40 -35 -30 -25 -40 -30 -25 -15 -15 -10 -40 -30 -30 -20	SUCTION PRESSURE - bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 2.8 3.5 0.4 1.1 2.8 3.5 0.4 1.1 2.1	0.39 0.33 0.32 0.32 0.32	1.4 0.47 0.55 0.50 0.43 0.44 0.40 0.43 0.43 1.64	E SET 2.1 0.47 0.55 0.47 0.53 2.33	ING - 2.8 0.47 0.64 0.70 0.47 0.64 3.02	3.5 — — — — — — — — — — — — —	 0.47 0.64 0.89 0.82
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig 0/5.2 barg CRO(T)-6 0/60 psig	TEMP. °C -25 -20 -15 -10 -20 -15 -5 5 -15 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 5 5 -15 -10 -5 5 5 -15 -10 -5 5 5 -10 -15 -10 -20 -15 -15 -10 -20 -15 -20 -15 -20 -15 -20 -15 -20 -15 -20 -15 -20 -15 -20 -20 -15 -20 -20 -15 -20 -20 -15 -20 -20 -15 -20 -20 -15 -20 -20 -15 -20 -20 -15 -20 -20 -15 -5 -20 -20 -15 -20 -20 -15 -5 -20 -20 -15 -20 -20 -15 -20 -20 -20 -20 -15 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4	0.60 0.61 0.54 	1.4 0.60 0.70 0.80 0.65 0.68 0.63 0.65 2.43 2.12 2.12	E SET 2.1 0.70 0.80 0.80 0.80 0.77 0.80 0.80	Z.8 0.70 0.80 1.02 0.90 0.90 0.97 0.91 4.74 4.71 4.455	3.5 — — — — — 0.80 0.90 1.02 1.11 5.54 6.00 5.89 4.74		EVAP. TEMP. °C -40 -35 -25 -40 -25 -15 -15 -10 -40 -30 -25 -15 -10 -40 -30 -20 -10	SUCTION PRESSURE – bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 2.8 3.5 0.4 1.1 2.8 3.5 0.4 1.1 2.1 3.5	0.39 	1.4 0.47 0.55 0.50 0.43 0.44 0.40 0.43 1.64 1.27 	E SET 2.1 0.47 0.57 0.57 0.53 0.47 0.53 2.33 2.18 	Z.8 0.47 0.64 0.70 0.647 0.647 0.647 3.02 3.02 3.08 2.32	3.5 — — — — — 0.47 0.64 0.73 0.65 3.28 3.99 3.48 —	
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig 0/5.2 barg CRO(T)-6 0/60 psig 0/4.1 barg CRO(T)-10	TEMP. °C -25 -20 -15 -10 -20 -15 -5 -5 -15 -15 -10 -5 -15 -10 -5 5 -15 -15 -15	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6	0.60 0.61 0.54 0.50 0.51 0.50 1.27 1.27 1.22	1.4 0.60 0.70 0.80 0.65 0.65 0.65 0.63 0.65 2.43 2.12 8.23	E SET 2.1 0.70 0.80 0.85 0.77 0.80 0.80 0.77 0.80 0.80 3.58 3.42 3.01 12.4	ING - 2.8 0.70 0.80 1.02 0.94 0.80 0.91 4.71 4.45 12.4	3.5 — — — — 0.80 0.90 1.02 1.11 5.54 6.00 5.89 4.74 12.4		EVAP. TEMP. °C -40 -35 -25 -40 -25 -15 -10 -30 -15 -10 -40 -30 -20 -10 -40 -40	SUCTION PRESSURE - bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 2.8 3.5 0.4 1.1 2.8 3.5 0.4 1.1 2.1 3.5 0.4	0.39 0.33 0.32 0.32 0.32	1.4 0.47 0.55 0.50 0.43 0.40 0.43 1.64 1.27 6.25	E SET 2.1 0.47 0.57 0.57 0.57 0.53 2.33 2.18 2.33 2.18 7.43	TING - 2.8 0.47 0.47 0.64 0.70 0.64 0.47 0.64 3.02 3.02 3.08 2.32 7.43	3.5 — — — — — — 0.47 0.64 0.73 0.65 3.28 3.99 3.48 — 7.43	
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig 0/5.2 barg CRO(T)-6 0/60 psig 0/4.1 barg	TEMP. °C -25 -20 -15 -5 -5 -5 -5 -15 -15 -10 -5 -5 -15 -10 -5 5 -15 -10 -5 5 -15 -10	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0	0.60 0.61 0.54 0.50 0.51 0.50 1.27 1.27 1.02 	1.4 0.60 0.70 0.80 0.82 0.65 0.63 0.63 0.65 0.63 0.65 2.43 2.12 8.23 5.16	E SET 2.1 0.70 0.80 0.85 0.77 0.80 0.80 0.77 0.80 0.80 0.77 0.80 0.80 1.2.4 13.2	TING - 2.8 0.70 0.80 1.02 0.94 0.90 0.97 0.91 4.74 4.45 12.4 13.9	3.5 — — — — — 0.80 0.90 1.02 1.11 5.54 6.00 5.89 4.74 12.4 13.9		EVAP. TEMP. °C -40 -35 -30 -25 -40 -30 -25 -15 -40 -30 -15 -15 -10 -40 -30 -20 -10 -40 -30 -30	SUCTION PRESSURE – bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 2.8 3.5 0.4 1.1 2.8 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1	0.39 	1.4 0.47 0.55 0.50 0.43 0.44 0.40 0.43 1.64 1.27 	ESET 2.1 0.47 0.57 0.55 0.47 0.53 2.33 2.18 7.43 7.81	Constraint Constra	3.5 — — — — — — — 0.47 0.64 0.73 0.65 3.28 3.99 3.48 — 7.43 9.78	
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig 0/5.2 barg CRO(T)-6 0/60 psig 0/4.1 barg CRO(T)-10	TEMP. °C -25 -20 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -15 -10 -5 5 -15 -15 -10 -5 5 -15 -10 -5 -5 -15 -10 -5 -5 -15 -10 -5 -15 -15 -10 -5 -5 -15 -10 -5 -15 -15 -15 -15 -15 -15 -15	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0	0.60 0.61 0.54 0.50 0.51 0.50 1.27 1.27 1.22	1.4 0.60 0.70 0.80 0.65 0.65 0.65 0.63 0.65 2.43 2.12 8.23	E SET 2.1 0.70 0.80 0.85 0.77 0.80 0.80 0.77 0.80 0.80 3.58 3.42 3.01 12.4	ING - 2.8 0.70 0.80 1.02 0.94 0.80 0.91 4.71 4.45 12.4	3.5 — — — — — - — 0.80 0.90 1.02 1.11 5.54 6.00 5.89 4.74 12.4 13.9 15.6		EVAP. TEMP. °C -40 -35 -30 -25 -40 -30 -25 -15 -40 -30 -15 -10 -40 -30 -20 -10 -40 -30 -20 -20	SUCTION PRESSURE – bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 2.8 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 2.1	0.39 	1.4 0.47 0.55 0.50 0.43 0.40 0.43 1.64 1.27 6.25	E SET 2.1 0.47 0.57 0.57 0.57 0.53 2.33 2.18 2.33 2.18 7.43	TING - 2.8 0.47 0.47 0.64 0.70 0.64 0.47 0.64 3.02 3.02 3.08 2.32 7.43	3.5 — — — — — — 0.47 0.64 0.73 0.65 3.28 3.99 3.48 — 7.43	
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig 0/5.2 barg CRO(T)-6 0/60 psig 0/4.1 barg	TEMP. °C -25 -20 -15 -5 -5 -5 -5 -15 -15 -10 -5 -5 -15 -10 -5 5 -15 -10 -5 5 -15 -10	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0	0.60 0.61 0.54 0.50 0.51 0.50 1.27 1.27 1.02 	1.4 0.60 0.70 0.82 0.65 0.65 0.63 0.65 2.43 2.12 2.13 5.16 8.23 5.16	E SET 2.1 0.70 0.80 0.85 0.77 0.80 0.80 3.58 3.42 3.042 3.4	TING - 2.8 0.70 0.80 1.02 0.94 0.90 0.97 0.91 4.71 4.71 12.4 13.9 15.6	3.5 — — — — — - — 0.80 0.90 1.02 1.11 5.54 6.00 5.89 4.74 12.4 13.9 15.6 17.6		EVAP. TEMP. °C -40 -35 -30 -25 -40 -30 -25 -15 -40 -30 -15 -15 -10 -40 -30 -20 -10 -40 -30 -30	SUCTION PRESSURE – bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 2.8 3.5 0.4 1.1 2.8 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1	0.39 	1.4 0.47 0.55 0.50 0.43 0.44 0.43 0.43 0.44 0.43 0.44 0.43 1.64 1.27 6.255 2.16	ESET 2.1 0.47 0.57 0.55 0.47 0.53 2.33 2.18 7.43 7.81 7.43	Z.8 0.47 0.64 0.70 0.47 0.64 2.32 7.43 9.78 6.666	3.5 — — — — — — — — — — 0.47 0.64 0.73 0.65 3.28 3.99 3.48 3.99 3.48 — 7.43 9.78 12.6 —	
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig 0/5.2 barg CRO(T)-6 0/60 psig 0/4.1 barg	TEMP. °C -25 -20 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -15 -10 -5 5 -15 -15 -10 -5 5 -15 -10 -5 -5 -15 -10 -5 -5 -15 -10 -5 -15 -15 -10 -5 -5 -15 -10 -5 -15 -15 -15 -15 -15 -15 -15	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0	0.60 0.61 0.54 0.50 0.51 1.27 1.27 1.27 1.02 1.02	1.4 0.60 0.70 0.82 0.65 0.65 0.63 0.65 2.43 2.12 2.43 2.12 8.23 5.16 VALV	E SET 2.1 0.70 0.80 0.85 0.77 0.80 0.80 0.77 0.80 0.80 1.2.4 13.2 9.47 (E SET	TING - 2.8 0.70 0.80 1.02 0.94 0.90 0.97 0.91 4.74 12.4 13.9 15.6 TING -	3.5 — — — — — — 0.80 0.90 1.02 1.11 5.54 6.00 5.89 4.74 12.4 13.9 15.6 17.6 barg		EVAP. TEMP. °C -40 -35 -30 -25 -40 -30 -25 -15 -40 -30 -15 -10 -40 -30 -20 -10 -40 -30 -20 -20	SUCTION PRESSURE – bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 2.8 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 2.1	0.39 	1.4 0.47 0.55 0.50 0.40 0.43 0.43 0.40 0.43 1.64 1.27 6.25 2.16 VALV	E SET 2.1 0.47 0.57 0.55 0.47 0.53 2.33 2.18 7.43 7.81 7.43 7.81 E SET	Z.8 0.47 0.64 0.70 0.47 0.64 3.02 3.02 3.03 9.78 6.666 TING -	3.5 	 0.47 0.64 0.89 0.82
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig 0/5.2 barg CRO(T)-6 0/60 psig 0/4.1 barg	TEMP. °C -25 -20 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -15 -5 5 -15 -15 -5 5 -15 -1	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6	0.60 0.61 0.54 0.50 0.51 0.50 1.27 1.27 1.02 1.02 2.7	1.4 0.60 0.70 0.82 0.65 0.65 0.65 2.43 2.12 8.23 5.16 VALV 3.4	E SET 2.1 0.70 0.80 0.85 0.77 0.80 0.80 0.80 3.58 3.42 3.01 12.4 13.2 9.47 E SET 4.1	TING - 2.8 0.70 0.80 1.02 0.94 0.80 0.90 0.91 4.71 4.471 13.9 15.6 TING - 4.8	3.5 — — — — — 0.80 0.90 1.02 1.11 5.54 6.00 5.89 4.74 13.9 15.6 17.6 barg 5.5		EVAP. TEMP. °C -40 -35 -30 -25 -40 -30 -25 -15 -40 -30 -15 -15 -10 -40 -30 -20 -10 -40 -30 -20 -10 -10	SUCTION PRESSURE - bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 2.8 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4	0.39 	1.4 0.47 0.55 0.50 0.40 0.43 0.40 0.43 1.64 1.27 6.25 2.16 VALV 3.4	E SET 2.1 0.47 0.57 0.55 0.47 0.53 2.33 2.18 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.43 7.43 7.44 7.44 7.44 7.44 7.44	TING - 2.8 0.47 0.64 0.70 0.47 0.64 3.02 3.08 2.32 7.43 9.78 6.66 TING - 4.8	3.5 	 0.47 0.64 0.89 0.82 -
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig 0/5.2 barg CRO(T)-6 0/60 psig 0/4.1 barg	TEMP. °C -25 -20 -15 -10 -20 -15 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -20 -15 -15 -15 -15 -10 -20 -15 -15 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0	0.60 0.61 0.54 0.50 0.51 0.50 1.27 1.27 1.02 1.02 3.47	1.4 0.60 0.70 0.82 0.65 0.65 0.63 0.65 2.43 2.12 8.23 5.16 VALV 3.4 4.33	E SET 2.1 0.70 0.80 0.85 0.77 0.80 0.85 0.77 0.80 0.80 12.4 13.2 9.47 12.4 13.2 9.47 E SET 4.1 5.20	TING - 2.8 0.70 0.80 1.02 0.94 0.80 0.90 0.91 4.74 4.71 12.4 13.9 15.6 TING - 4.8 6.07	3.5 — — — — — 0.80 0.90 1.02 1.11 5.54 6.00 5.89 4.74 12.4 13.9 15.6 17.6 barg 5.5 6.26		EVAP. TEMP. °C -40 -35 -30 -25 -40 -30 -25 -15 -40 -30 -15 -10 -40 -30 -20 -10 -40 -30 -20 -10 -40 -30 -20 -10 -15	SUCTION PRESSURE - bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 2.8 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4	0.39 	1.4 0.47 0.55 0.50 0.40 0.43 0.40 0.43 1.64 1.27 6.25 2.16 5.216 	E SET 2.1 0.47 0.57 0.55 0.47 0.55 2.33 2.18 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 	TING - 2.8 - - - - - - - - - - - - -	3.5 	 0.47 0.64 0.89 0.82 -
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig 0/5.2 barg CRO(T)-6 0/60 psig 0/4.1 barg CRO(T)-10 0/60 psig 0/4.1 barg CRO(T)-6 30/110 psig	TEMP. °C -25 -20 -15 -10 -15 -5 5 -15 -10 -5 5 -15 -10 -5 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 -5 -15 -10 -5 -5 -15 -15 -15 -10 -20 -15 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -15 -10 -15 -15 -10 -15 -15 -10 -15 -15 -10 -15 -15 -10 -15 -15 -10 -15 -15 -10 -15 -15 -10 -15 -15 -10 -15 -15 -10 -15 -15 -10 -15 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -5 -15 -10 -5 -5 -10 -15 -10 -5 -5 -5 -15 -10 -5 -5 -5 -15 -10 -5 -5 -5 -15 -10 -5 -5 -5 -15 -15 -15 -15 -15 -15 -15 -1	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4	0.60 0.61 0.54 0.50 0.51 1.27 1.27 1.02 1.02 1.02 3.47 	1.4 0.60 0.70 0.82 0.65 0.65 0.63 0.65 2.43 2.12 8.23 5.16 VALV 3.4 4.33 4.31	E SET 2.1 0.70 0.80 0.85 0.77 0.80 0.85 0.77 0.80 0.80 12.4 13.2 9.47 12.4 13.2 9.47 E SET 4.1 5.20 5.28	TING - 2.8 0.70 0.70 0.80 1.02 0.94 0.80 0.90 0.91 4.74 4.71 12.4 13.9 15.6 112.4 13.9 15.6 4.8 6.07 6.25	3.5 — — — — — 0.80 0.90 1.02 1.11 5.54 6.00 5.89 4.74 12.4 13.9 15.6 17.6 barg 5.5 6.26 7.03		EVAP. TEMP. °C -40 -35 -25 -40 -30 -25 -15 -40 -30 -15 -10 -40 -30 -20 -10 -40 -30 -20 -10 -10 -10 -10 -10 -10	SUCTION PRESSURE - bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 2.8 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	0.39 	1.4 0.47 0.55 0.50 0.40 0.43 0.44 0.40 0.43 1.64 1.27 6.25 2.16 6.25 2.16 VALV 3.4 2.20 	E SET 2.1 0.47 0.57 0.55 0.47 0.53 2.33 2.18 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.44 7.44 7.44 7.44 7.44 7.44 7.44	TING - 2.8 - - - - - - - - - - - - -	3.5 	 -
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig 0/5.2 barg CRO(T)-6 0/60 psig 0/4.1 barg CRO(T)-6 0/60 psig 0/4.1 barg	TEMP. °C -25 -20 -15 -10 -15 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 -5 -10 -20 -15 -10 -20 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -5 -5 -5 -5 -10 -5 -5 -5 -5 -10 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4	0.60 0.61 0.54 	1.4 0.60 0.70 0.82 0.65 0.68 0.63 0.65 2.43 2.12 8.23 5.16 VALV 3.4 4.33 4.31 	E SET 2.1 0.70 0.80 0.85 0.77 0.80 0.80 0.80 3.58 3.42 3.01 12.4 13.2 9.47 12.4 13.2 9.47 E SET 4.1 5.20 5.28 5.18	TING - 2.8 0.70 0.80 1.02 0.94 0.80 0.90 0.91 4.74 4.71 12.4 13.9 15.6 4.8 6.07 6.25	3.5 — — — — — 0.80 0.90 1.02 1.11 5.54 6.00 5.89 4.74 13.9 15.6 17.6 barg 5.5 6.26 7.03 7.33		EVAP. TEMP. °C -40 -35 -30 -25 -40 -30 -25 -15 -40 -30 -15 -10 -40 -30 -20 -10 -40 -30 -20 -10 -10 -10 -10 -15 -10 -15 -10 -5	SUCTION PRESSURE - bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 2.8 0.4 1.1 2.8 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 2.1 3.5 0.4 1.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	0.39 	1.4 0.47 0.55 0.50 	E SET 2.1 0.47 0.57 0.55 0.47 0.55 2.33 2.18 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 7.43 7.81 	TING - 2.8 - - - - - - - - - - - - -	3.5 	 -
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig 0/5.2 barg CRO(T)-6 0/60 psig 0/4.1 barg CRO(T)-10 0/60 psig 0/4.1 barg CRO(T)-6 30/110 psig	TEMP. °C -25 -20 -15 -10 -20 -15 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -5 5 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -15 -10 -20 -5 -5 -5 -10 -15 -10 -5 -5 -5 -10 -10 -5 -5 -5 -10 -15 -10 -5 -5 -5 -10 -10 -5 -5 -5 -10 -15 -10 -5 -5 -5 -10 -15 -10 -5 -5 -5 -5 -15 -10 -5 -5 -5 -5 -5 -5 -15 -10 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4	0.60 0.61 0.54 	1.4 0.60 0.70 0.82 0.65 0.63 0.65 2.43 2.12 2.43 5.16 3.4 4.33 4.31	E SET 2.1 0.70 0.80 0.85 0.77 0.80 0.80 0.80 3.58 3.42 3.01 12.4 13.2 9.47 12.4 13.2 9.47 5.28 5.18 	TING - 2.8 0.70 0.80 1.02 0.94 0.80 0.90 0.91 4.74 4.71 4.45 12.4 13.9 15.6 TING - 4.8 6.07 6.25 6.03	3.5 		EVAP. TEMP. -40 -35 -30 -25 -40 -30 -25 -15 -10 -40 -30 -10 -40 -30 -20 -10 -40 -30 -20 -10 -10 -40 -30 -20 -10 -10 -5 -0 0	SUCTION PRESSURE – bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 2.8 3.5 0.4 1.1 2.8 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 2.1 3.5 0.4 1.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	0.39 	1.4 0.47 0.55 0.50 0.43 0.44 0.43 0.44 1.64 1.27 5.216 5.216 5.216 5.216 5.216 5.25 2.16 5.25 2.16 5.25 2.16 5.25 2.216 5.25 2.216 5.25 5.25 5.25 5.25 5.25 5.25 5.25	ESET 2.1 0.47 0.55 0.55 0.55 0.55 0.55 0.55 0.47 0.53 2.18 2.33 2.18 7.43 7.81 7.43 7.81 7.43 7.83 2.18 7.43 7.83 2.18 7.43 7.83 2.18 7.43 7.43 7.43 7.43 7.43 7.43 7.43 7.43	TING - 2.8 - - 0.47 0.64 0.70 0.47 0.64 - 0.47 0.64 - 3.02 3.08 2.32 - 7.43 9.78 6.66 6.66 - 4.8 3.955 3.43 2.56 -	3.5 	 0.47 0.89 0.82 5.71 5.39 4.74 3.67
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig 0/5.2 barg CRO(T)-6 0/60 psig 0/4.1 barg CRO(T)-10 0/60 psig 0/4.1 barg CRO(T)-6 30/110 psig 2.1/7.6 barg	TEMP. °C -25 -20 -15 -10 -20 -15 -15 -5 5 -15 -10 -5 -5 -15 -10 -5 -15 -10 -5 5 -15 -10 -5 5 -10 -5 5 -10 -5 5 -10 -5 5 -10 -5 5 -10 -5 5 -10 -5 5 -10 -5 5 -10 -5 5 -10 -5 -10 -5 -5 0 5 -10 -5 -10	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0 1.4 2.4 2.4 0.6 1.0 1.4 2.4 2.4 0.6 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 1.0 1.4 2.4 1.0 1.4 1.4 2.4 1.0 1.4 1.4 1.1 2.4 1.0 1.4 1.1 1.4 1.1 2.4 1.0	0.60 0.61 0.54 	1.4 0.60 0.70 0.82 0.65 0.63 0.65 2.43 2.12 8.23 5.16 3.4 4.33 4.31 13.9	E SET 2.1 0.70 0.80 0.85 0.77 0.80 0.80 0.85 1.24 13.2 9.47 12.4 13.2 9.47 E SET 4.1 5.20 5.28 5.18 	TING - 2.8 0.70 0.80 1.02 0.94 0.80 0.90 0.91 4.74 4.74 12.4 13.9 15.6 6.07 6.25 6.25 6.03 13.9	3.5 		EVAP. TEMP. °C -40 -35 -30 -25 -40 -30 -25 -15 -40 -30 -25 -15 -10 -40 -30 -20 -10 -40 -30 -20 -10 -10 -15 -10 -5 0 0 -15	SUCTION PRESSURE - bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 2.8 3.5 0.4 1.1 2.8 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 2.8 3.5 0.4 2.8 3.5 0.4 2.8 3.5 0.4 2.8 3.5 0.4 2.8 3.5 0.4 2.8 3.5 0.4 2.8 3.5 0.4 2.8 3.5 0.4 2.8 3.5 0.4 2.8 3.5 0.4 2.8 2.8 3.5 0.4 2.8 2.8 3.5 0.4 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	0.39 	1.4 0.47 0.55 0.50 	E SET 2.1 0.47 0.57 0.55 0.47 0.53 2.33 2.18 2.33 2.18 7.43 7.81 7.43 7.81 5.55 2.43 7.81 1.03	TING - 2.8 0.47 0.64 0.70 0.47 0.64 3.02 3.02 3.02 3.02 3.08 2.32 7.43 9.78 6.66 3.978 3.943 3.43 3.43 3.43 3.43 3.43 3.43 3.43	3.5 	 0.47 0.64 5.71 5.39 4.74 3.67 14.1
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig 0/5.2 barg CRO(T)-6 0/60 psig 0/4.1 barg CRO(T)-10 0/60 psig 0/4.1 barg CRO(T)-6 30/110 psig	TEMP. °C -25 -20 -15 -5 -5 -5 -5 -15 -10 -5 -15 -10 -5 -15 -10 -5 -15 -10 -5 -5 -15 -10 -5 -5 -15 -10 -5 -5 -5 -15 -10 -20 -5 -15 -15 -10 -20 -20 -15 -5 -15 -15 -15 -15 -15 -10 -20 -20 -15 -5 -15 -15 -15 -15 -15 -15 -15 -15	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4 0.6 1.0 1.4 2.4	0.60 0.61 0.54 	1.4 0.60 0.70 0.82 0.65 0.63 0.63 0.65 2.43 2.12 8.23 5.16 4.33 4.31 13.9 15.6	E SET 2.1 0.70 0.80 0.85 0.77 0.80 0.80 0.77 0.80 0.80 1.3.58 3.42 3.01 12.4 13.2 9.47 E SET 4.1 5.20 5.28 5.18 5.18 5.18 5.18	TING - 2.8 0.70 0.80 1.02 0.94 0.80 0.90 0.91 4.74 4.75 12.4 13.9 15.6 6.07 6.25 6.03 13.9 15.6	3.5 		EVAP. TEMP. °C -40 -35 -40 -25 -40 -30 -25 -15 -40 -30 -15 -10 -40 -30 -20 -10 -40 -30 -20 -10 -15 -10 -5 0 -15 -10	SUCTION PRESSURE – bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 2.8 3.5 0.4 1.1 2.8 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 2.1 3.5 0.4 2.1 3.5 0.4 2.1 3.5 0.4 2.1 3.5 0.4 0.4 0.7 1.1 1.1 0.4 0.7 1.1 1.1 0.4 0.7 1.1 1.1 0.4 0.4 0.7 1.1 1.1 0.4 0.4 0.7 1.1 1.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0.39 	1.4 0.47 0.55 0.50 0.40 0.43 0.44 0.40 0.43 1.64 1.27 6.25 2.16 - 5.216 5.216 4.81 4.81 	E SET 2.1 0.47 0.57 0.55 0.47 0.53 2.33 2.18 2.33 2.18 7.43 7.81 7.43 7.81 5.17	TING - 2.8 0.47 0.64 0.70 0.64 0.64 0.64 0.64 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.04 3.02 3.04 3.02 3.04 3.02 3.04 3.02 3.04 3.02 3.04 3.02 3.04 3.02 3.04 3.02 3.04 3.02 3.04 3.02 3.04 3.02 3.04 3.02 3.04 3.02 3.04	3.5 	 0.47 0.89 0.82 5.71 5.39 4.74 3.67 14.1
CRO-4 0/20 psig 0/1.4 barg CRO-4 0/50 psig 0/3.4 barg CRO-4 0/75 psig 0/5.2 barg CRO(T)-6 0/60 psig 0/4.1 barg CRO(T)-10 0/60 psig 0/4.1 barg CRO(T)-6 30/110 psig 2.1/7.6 barg CRO(T)-10	TEMP. °C -25 -20 -15 -10 -20 -15 -15 -5 5 -15 -10 -5 -5 -15 -10 -5 -15 -10 -5 5 -15 -10 -5 5 -10 -5 5 -10 -5 5 -10 -5 5 -10 -5 5 -10 -5 5 -10 -5 5 -10 -5 5 -10 -5 5 -10 -5 -10 -5 -5 0 5 -10 -5 -10	PRESSURE – bar (Reference) 0.0 0.3 0.6 1.0 0.3 0.6 1.4 2.4 0.6 1.0 1.4 2.4 2.4 0.6 1.0 1.4 2.4 2.4 0.6 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 2.4 1.0 1.4 2.4 1.0 1.4 2.4 1.0 1.4 1.4 2.4 1.0 1.4 1.4 1.1 2.4 1.0 1.4 1.1 1.4 1.1 2.4 1.0	0.60 0.61 0.54 	1.4 0.60 0.70 0.82 0.65 0.63 0.65 2.43 2.12 8.23 5.16 3.4 4.33 4.31 13.9	E SET 2.1 0.70 0.80 0.85 0.77 0.80 0.80 0.85 1.24 13.2 9.47 12.4 13.2 9.47 E SET 4.1 5.20 5.28 5.18 	TING - 2.8 0.70 0.80 1.02 0.94 0.80 0.90 0.91 4.74 4.74 12.4 13.9 15.6 6.07 6.25 6.25 6.03 13.9	3.5 		EVAP. TEMP. °C -40 -35 -30 -25 -40 -30 -25 -15 -40 -30 -25 -15 -10 -40 -30 -20 -10 -40 -30 -20 -10 -10 -15 -10 -5 0 0 -15	SUCTION PRESSURE - bar (Reference) 0.4 0.7 1.1 1.6 0.4 1.1 1.6 2.8 0.4 1.1 2.8 3.5 0.4 1.1 2.8 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 1.1 2.1 3.5 0.4 2.8 3.5 0.4 2.8 3.5 0.4 2.8 3.5 0.4 2.8 3.5 0.4 2.8 3.5 0.4 2.8 3.5 0.4 2.8 3.5 0.4 2.8 3.5 0.4 2.8 3.5 0.4 2.8 3.5 0.4 2.8 2.8 3.5 0.4 2.8 2.8 3.5 0.4 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	0.39 	1.4 0.47 0.55 0.50 0.43 0.44 0.43 0.44 1.64 1.27 5.216 5.216 5.216 5.216 5.216 5.25 2.16 5.25 2.16 5.25 2.16 5.25 2.216 5.25 2.216 5.25 5.25 5.25 5.25 5.25 5.25 5.25	E SET 2.1 0.47 0.57 0.55 0.47 0.53 2.33 2.18 2.33 2.18 7.43 7.81 7.43 7.81 5.55 2.43 7.81 1.03	TING - 2.8 0.47 0.64 0.70 0.47 0.64 3.02 3.02 3.02 3.02 3.08 2.32 7.43 9.78 6.66 3.978 3.943 3.43 3.43 3.43 3.43 3.43 3.43 3.43	3.5 	 0.47 0.64 0.89 0.82 5.71 5.39 4.74 3.67 14.1 15.8 17.6

HEAD PRESSURE CONTROL VALVES

High and Low Ambient Stability

The design of air conditioning systems utilizing air cooled condensing units involves two main problems that must be solved if the system is to operate reliably and economically...**high ambient** and **low ambient** operation. If the condensing unit is properly sized, it will operate satisfactorily during extremely high ambient temperatures. However, some units will be required to operate at ambient temperatures below their design dry bulb temperature during most of the year, the solution to low ambient operation is more complex.

Without good head pressure control during low ambient operation, the system can experience both running cycle and off-cycle problems. Since the pressure differential across the thermostatic expansion valve port affects the rate of refrigerant flow, low head pressure generally causes insufficient refrigerant to be fed to the evaporator. Failure to have sufficient head pressure will result in low suction pressure and/or iced evaporator coils.

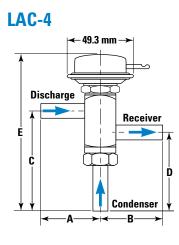
Specifications and Dimensions

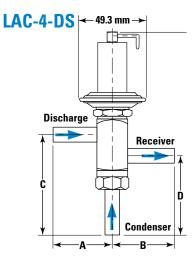
The primary off-cycle problem is refrigerant migration to the condenser. Insufficient flow through the TEV will cause a low suction pressure.

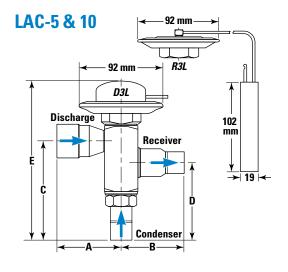
The typical method of maintaining normal head pressure in a refrigeration system during periods of low ambient temperature is to restrict liquid flow from the condenser to the receiver, and at the same time divert hot gas to the inlet of the receiver. This backs liquid refrigerant up into the condenser reducing its capacity which in turn increases the condensing pressure. At the same time the hot gas raises liquid pressure in the receiver, allowing the system to operate normally.

Sporlan Head Pressure Control for systems with air cooled condensers can be accomplished using one of several valve options; the non-adjustable OROA-5, the adjustable ORI/ORD combination, or the economical LAC series.

	VALVE TYPE	STANDARD FACTORY SETTING	CONNEC ODF SC (Incl	DLDER				DI	MENSIONS – mm					GHT g	REPL	ACEMENT PARTS
		bar	INLET(S)	OUTLET	Α	В	C	D	E	F	G	I	NET	SHIP		
			5/8	5/8									.45	.57		825-5
	ORI-6-65/225-H	8.3	7/8	7/8	250	128	162	—						-		825-7
			1-1/8	1-1/8									.57	.68	5	825-9
	ORI-10-65/225-H	8.3	1-1/8	1-1/8	280	139	167						1.13	1.25	aine	825-9
	-	1.4	1-3/8	1-3/8	167	25				_		—	15	.23	Inlet Strainer	825-11
	ORD-4-20	1.4	5/8 ① 5/8	5/8	167	25	_	_					.15	.23	let	825-5
	OROA-5	6.9, 12.4	2 5/8	5/8	151	95	48	55					.91	1.02	2	825-5
		or 14.5	① 5/8 ② 7/8	7/8	157	102	54	61								825-7
(
	ORI Condenser Connection ORI Condenser C															
	ORI –	6	- 6	5/225	_		7/8	″ OI	DF - St	With raine	r -	-	H			
	Valve Type: Open on R ise of Inlet Pressure	Port Size Eighths of a Inch	an Adj	lominal justment ige (psig)		Con	necti	ons ·	- Solder	t Strair ptional	ner	Р	esignate High Tressure Bellows			
	OROA – Valv	e Nome	nclatu	ire/Or	der	ing	Ins	str	uctions		OR	D-4	4			
	OROA	- 5	-	180		5/8″			With Strainer			ORE) –	Ĺ	4	- 20
	Valve Type: Open on Rise of Outlet Pressure	Port Size Eighths of a Inch	an Sett	ressure ing (psig)		onnec - Sol	der		Inlet Strainer (Optional)		Ope of D	ive Ty n on iffere ressu	R ise ential	Eighth	Size s of ar ch	Opening Pressure Differential (psi)


For complete information consult your nearest Sporlan Wholesaler or email europecold@parker.com and request Bulletin 90-30.


HEAD PRESSURE CONTROL VALVES


Specifications and Dimensions

VALVE TYPE	STANDARD FACTORY SETTING	CONNEC ODF SC (Inch)LDER 1es)				DI	MEN	ISION	IS — 1	nm				WEI k	GHT g	REP	LACEMENT PARTS
	bar	INLET(S)	OUTLET	Α	В	C	D			E		F	G		NET	SHIP		
		1/4	1/4												.34	.39		
LAC-4		3/8	3/8	45	48	77	61		1	20					.36	.40		
		1/2	1/2												.37	.41		Not Available
		3/8	3/8	45	40		C1		1						.40	.46	nts	Available
LAC-4-DS		1/2	1/2	45	48	77	61		1	55					.43	.49	me	
	6.9,	1/2	1/2	42	41	96	76		155		142				1.13	1.20	Ele	
	12.4	5/8	5/8	44	43	98	78		157		144	_		_	1.16	1.22	ent	Non-Adjustable Dome Element:
LAC-5	or 14.5	7/8	7/8	57	55	110	91		170		157				1.18	1.25	em	D3L (specify
	14.5	1-1/8	1-1/8	61	60	114	95	Dal	173	Dat	161				1.25	1.32	lac	setting) or
LAC-10		① 1-3/8 ② 7/8	7/8	72	68	112	88	D3L	176	R3L	163				1.45	1.55	Replacement Elements	Non-Adjustable Remote Bulb
LAG-IU		① 1-3/8 ② 1-1/8	1-1/8	12	65	123	98		187		174				1.49	1.59		Element: R3L (specify setting)

① Discharge Connection ② Condenser Connection

LAC – Valve Nomenclature/Ordering Instructions To eliminate shipment delays, specify complete valve designations.

LAC	-	4	_	DS	_	100/180	-	3/8″	Х	3/8″	х	3/8	ODF
Valve Type: Low Ambient Control		Valve Size		Dual Setting Omit for standard dome element		Valve Setting(s) (psig) Specify one setting for standard dome element		Discharge Connection (Inches)		Condenser Connection (Inches)		Receiver Connection (Inches)	Solder Connections
LAC	-	5	-	180		R	-	5/8″	Х	5/8″	Х	3/8	ODF

HEAD PRESSURE CONTROL VALVES

Low Ambient (WINTER) Capacities – kW of Refrigeration Capacities are based on -20°C evaporator temperature, 35°C condenser, 6°C subcooled liquid.

	MINIMUM	PRESSURE		VA	LVE T	/PE			MINIMUM	PRESSURE		VA	LVE T	/PE	
REFRIGERANT Valve Setting (bar)	AMBIENT DESIGN TEMP. °C	DROP ACROSS VALVE (bar)	LAC-4	LAC-5	LAC-10	0R0A-5	ORD-4	REFRIGERANT Valve Setting (bar)	AMBIENT DESIGN TEMP. °C	DROP ACROSS VALVE (bar)	LAC-4	LAC-5	LAC-10	OROA-5	ORD-4
		0.07	5.96	10.6	25.4	—				0.07	4.37	7.75	18.7	—	—
		0.14	8.38							0.14	6.15	11.0	26.2	—	—
	-30	0.35	13.1	23.6		—			-30	0.35		17.3	40.9	—	—
		1.60	26.9		112	54.4	54.4			1.60	19.9	36.5	83.0	39.5	39.5
		2.00		55.2	123	83.3				2.00		40.6	91.5	60.4	
22		0.07 0.14	6.38 8.97	11.3 16.0	27.1 38.0					0.07 0.14	4.64 9.52	8.20 11.6	19.7 27.7	_	
	-20	0.14	8.97		38.0 59.1			404A	-20	0.14	9.52	11.6	43.1		
407C	-20	1.60		53.0	119	61.3		(14.5 bar)	-20	1.60	21.1	38.6	43.1 87.4	44.0	44.0
(12.4 bar)		2.00		59.0	131	93.8		. ,		2.00		43.0	96.3		67.4
		0.07	6.91	12.2		<u> </u>	<u> </u>			0.07		43.0 8.78	21.1		
		0.07	9.71		40.8					0.07	7.00	12.4	29.5	_	_
	-10	0.35	15.2						-10	0.35	10.9	12.4	45.9		
	10	1.60	31.1	57.2	127	71.2	71.2		10	1.60	22.5	41.3	92.9	50.7	50.7
		2.00		63.7	140	109	109			2.00		46.0	102	77.6	77.6
		0.07		8.65						0.07	4.12	7.32	17.6		
		0.14		12.2		_				0.14		10.3	24.8	_	
	-30	0.35	10.7	19.2	45.4	_			-30	0.35	9.10	16.3	38.6	_	
		1.60	21.4	40.1	88.8	40.6	40.6			1.60	18.8	34.5	78.5	37.2	37.2
		2.00	23.5	44.5	96.6	62.4	62.4			2.00	20.8	38.4	86.5	57.0	57.0
		0.07	5.24	9.3	22.4	—				0.07	4.40	7.79	18.7	—	—
12/-		0.14	7.36	13.1	31.3	—		E07		0.14	6.20	11.0	26.3	—	—
134 a	-20	0.35	11.5	20.7	48.5	—		507	-20	0.35	9.70	17.4	40.9	—	—
(6.9 bar)		1.60	23.1	43.1	94.9		45.7	(14.5 bar)		1.60	20.0	36.7	83.0	41.9	41.9
		2.00	25.3		103	70.2	70.2			2.00	22.1	40.9		64.1	64.1
		0.07	5.73		24.3	—	—			0.07		8.38	20.1	—	—
		0.14	8.05			—				0.14		11.8	28.1		—
	-10	0.35		22.6		—	—		-10	0.35	10.4	18.7	43.8	—	
		1.60	25.2		103	53.3	53.3			1.60		39.5		48.7	48.7
		2.00	27.6		112	81.8	81.8			2.00	23.8	43.9	97.6	74.6	74.6
		0.07 0.14	6.06 8.54												
	-30	0.14	8.54 13.4												
		0.35		33.9											
		0.70		11.5											
R-410A		0.14	9.13												
(20.3 bar)	-20	0.35	14.3							—					
(20.3 bar)		0.70	20.0		65.6										
		0.07	7.0	12.4											
		0.14	9.85	17.5	32.5	_									
	-10	0.35	15.4	27.6		_									
		0.70		38.9		_									

High Ambient (SUMMER) Capacities – kW of Refrigeration Capacities are based on -20°C evaporator temperature, 43°C condenser, 6°C subcooled liquid.

	PRESSURE			VA	LVE T	/PE				PRESSURE			VA	LVE TY	/PE		
REFRIGERANT	DROP ACROSS VALVE (bar)	LAC-4	LAC-5	LAC-10	OROA-5	0RI-6	0RI-10	ORD-4	REFRIGERANT	DROP ACROSS VALVE (bar)	LAC-4	LAC-5	LAC-10	0R0A-5	0RI-6	ORI-1 0	ORD-4
	0.07	9.13	19.5	41.5	37.0	26.0	69.2	—		0.07	5.71	12.2	26.0	23.0	17.5	48.4	—
22	0.14	12.8	27.6	57.7	52.1	37.8	95.6	—		0.14	7.98	17.2	36.1	32.5	25.4	66.8	—
	0.21	15.5	33.9	69.9	63.7	47.0	116	—	404A	0.21	9.70	21.1	43.8	39.7	31.7	80.7	—
407C	0.28	17.8	39.1	80.1	73.5	54.9	132	—		0.28	11.2	24.4	50.2	45.8	37.0	92.3	—
	0.35	19.9	43.7	89.0	82.1	61.9	147	—		0.35	12.4	27.2	55.8	51.2	41.7	102	—
	0.07	8.15	17.4	37.1	33.0	18.2	45.6	—		0.07	5.58	11.9	25.5	22.6	17.8	49.3	—
	0.14	11.4	27.4	51.5	46.5	26.4	63.0	—		0.14	7.80	16.9	35.3	31.8	25.8	68.1	—
134a	0.21	13.9	30.2	62.4	56.9	32.9	76.1	—	507	0.21	9.49	20.7	42.8	38.9	32.1	82.3	—
	0.28	15.9	34.9	71.5	65.6	38.5	87.0	—		0.28	10.9	23.9	49.1	44.9	37.5	94.1	—
	0.35	17.7	39.0	79.5	73.2	43.4	96.5	—		0.35	12.2	26.7	54.5	50.1	42.4	104	—
	0.07	8.70	18.6	29.3	—	—	—	—									
	0.14	12.2	26.3	40.7	—	—	—	—									
410A	0.21	14.8	32.2	49.3	—	—	—	—			_	-					
	0.28	17.0	37.2	56.5	_	—	—	—									
	0.35	18.9	41.6	62.8	—	—	—										

DEFROST DIFFERENTIAL PRESSURE REGULATING VALVES

In many supermarket applications refrigerant gas from the discharge line or from the top of the receiver is used for defrost. This method of defrost diverts a portion of the hot gas or cool gas (from the top of the receiver) to the suction line and back through the evaporator being defrosted. The gas condenses in the evaporator and flows in reverse, through check valves, around the TEV and liquid line solenoid valve. Liquid refrigerant then flows to the liquid header where it is distributed to evaporators not in the defrost cycle. In order for this reverse flow to occur, the pressure of the defrost header must be greater than the pressure of the liquid header. The difference in pressure is known as the defrost differential.

DDR-20

OLDR-15

Several methods are used to obtain the defrost differential. The (O)LDR is designed

to maintain a differential pressure between the receiver and the liquid header.

Sporlan liquid line differential valves have a solenoid bypass feature that allows the valve to remain full open or modulate to maintain a differential. We supply two versions of liquid line differential valves: The **OLDR** is in the **full open position** when the coil is de-energized, and it's in differential operation mode when the coil is energized.

The **LDR** is in **differential operation mode** when the coil is de-energized, and it is in the full open position when the coil is energized.

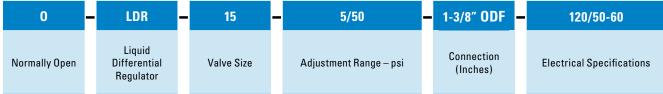
The **DDR-20** is designed to create a differential pressure between its inlet (discharge) pressure and the receiver pressure.

A solenoid bypass feature is incorporated in the valve so that the valve can be made to go full open when there is no need for a differential to be created. Energizing the solenoid coil opens the valve fully.

Location and Piping

The (O)LDR valves is located between the receiver and the liquid header. The DDR-20 is located in the discharge line before the condenser. The two types of defrost differential valves (liquid line and discharge line) are not to be applied on the same system.

Adjustment Range and Pressure Settings


All defrost differential valves are set by turning the adjusting stem located under the cap on the pilot differential valve. The adjustment range is 0.3 to 3.5 bar. The (O)LDR has a factory setting of 1.2 bar and the DDR-20 has a factory setting of 2 bar. Turning the stem clockwise increases the setting, counterclockwise decreases the setting.

Capacities – **kW**

Capacities based on 5°C evaporator temperature, 38°C condensing temperature, 14°K superheat return gas, discharge gas temperature 28°C above isentropic compression.

				R	EFRIGERAN	Т			
		134a			404A & 507			407C	
VALVE TYPE			P	RESSURE D	ROP ACROS	S VALVE – ba	r		
	0.14	0.21	0.35	0.14	0.21	0.35	0.14	0.21	0.35
LDR-15, OLDR-15	155	190	246	110	135	174	153	187	242
LDR-20, OLDR-20	343	420	543	243	298	384	338	414	534
DDR-20	27	33	42	29	35	45	34	41	53

OLDR – Valve Nomenclature/Ordering Instructions

DDR – Valve Nomenclature/Ordering Instructions

DDR -	20	- 5/50	-	1-5/8" ODF	-	120/50-60
Discharge Differential Regulator	Valve Size	Adjustment Range – psi		Connection (Inches)		Electrical Specifications

Specifications

VALVE TYPE	PORT SIZE – mm	DIFFERENTIAL SETPOINT RANGE	CONNECTIONS – Inches INLET x OUTLET	COIL
OLDR-15	25.4		1-3/8 ODF x 1-3/8 ODF	MKC-2
LDR-15	25.4		1-3/8 UDF X 1-3/8 UDF	OMKC-2
OLDR-20	00.0	0.34/3.4 bar	1-5/8 ODF x 1-5/8 ODF or	MKC-2
LDR-20	33.3		2-1/8 ODF x 2-1/8 ODF	OMKC-2
DDR-20	33.3		1-5/8 ODF x 1-5/8 ODF	MKC-2

M.R.P. of 27.5 bar. MOPD of 20.5 bar.

For complete information consult your nearest Sporlan Wholesaler or email europecold@parker.com and request Bulletin 90-50.

EVAPORATOR PRESSURE REGULATING VALVES

The Sporlan line of evaporator pressure regulating (EPR) valves are designed to provide an accurate and economical means of balancing system capacity and load requirements during "low" loads and/or while maintaining different evaporator conditions on multitemperature evaporator systems. These valves control evaporator temperature by maintaining evaporator pressure. As the evaporator load increases the **ORI** valves will **O**pen on **R**ise of **I**nlet pressure above the valve's setting to provide more flow capacity to meet the evaporator load. When the evaporator load decreases the valves will modulate closed to maintain the pressure setting of the valve.

Sporlan offers a number of EPR valve types in various sizes, and with optional features to accommodate almost any industry requirement. For more complete information on any of the EPR valve types see your nearest Sporlan Wholesaler or email europecold@ parker.com

Applications

- Maintain minimum evaporator temperature to avoid frost on air coils and provide improved humidity control
- Evaporator temperature control for food merchandisers (single and multiple evaporator systems)
- Evaporator temperature control on water chilling units

Required Sizing Information

- Refrigerant type
- Evaporator design capacity
- Design evaporator temperature or minimum evaporator pressure
- Available pressure drop
- Allowable evaporator pressure change (only applies to direct acting models)

Inlet strainer (standard on ODF models)

These direct acting EPRs are offered in two sizes. The direct acting design although economical requires an evaporator pressure change above the minimum evaporator pressure setting to provide the rated flow capacity. The nominal ratings are based on an 0.55 bar evaporator pressure change for the 0/3.45 bar adjustment range, and a 0.83 bar change for the 2.07/6.90 bar adjustment range. Valves should be selected for the desired maximum variation in evaporator pressure using the capacity multipliers below.

	E EVAPORATOR E CHANGE – bar	0.14	0.28	0.41	0.55	0.69	0.83	0.97
CAPACITY	ORIT-6, 10-0/50	.3	.6	.8	1.0	1.2	1.3	1.4
MULTIPLIER	ORIT-6, 10-30/100	_	.2	.6	.7	.9	1.0	1.1

Specifications

VALVE TYPE	PORT SIZE mm	ADJUSTMENT RANGE	STANDARD CONNECTIONS In BOLD
ORIT-6	19	0/3.45 or	1/2 & 5/8 SAE Flare* 1/2, 5/8, 7/8 & 1-1/8 ODF Solder
ORIT-10	31	2.07/6.90 bar	7/8, 1-1/8 & 1-3/8 ODF Solder

Standard features in bold.

*Not available with inlet strainer.

Capacities – kW

Capacities based on 38°C condensing temperature, 0°C subcooling, 6°K superheat, 0.55 bar evaporator pressure change for 0/3.45 bar adjustment range, and a 0.83 bar evaporator pressure change for 2.07/6.90 bar adjustment range.

		SAT	URAT	ED PR	ESSU	RE –							REF	RIGER.	ANT						
VALVE	EVAPORATOR TEMPERATURE		bar (Refere	ence)			22			134a			404A			407C			507	
TYPE	°C		REF	RIGER.	ANT						PRE	SSURI	E DROI	P ACR	DSS V.	ALVE -	- bar				
	U	22	134a	404A	407C	507	0.1	0.4	0.7	0.1	0.4	0.7	0.1	0.4	0.7	0.1	0.4	0.7	0.1	0.4	0.7
	5	4.83	2.48	6.03	4.35	6.32	3.85	7.16	8.75	2.89	5.01	5.60	3.36	6.30	7.78	3.57	6.54	7.87	3.31	6.22	7.70
ORIT-6	-5	3.21	1.42	4.12	2.77	4.34	3.19	5.73	6.73	2.29	3.67	3.77	2.71	4.94	5.90	2.87	5.04	5.75	2.68	4.90	5.90
UKII-0	-15	1.95	0.63	2.62	1.57	2.79	2.58	4.39	4.79	1.76	2.45	2.45	2.14	3.72	4.19	2.24	3.67	3.82	2.12	3.74	4.28
	-25	1.00	0.05	1.49	0.70	1.61	2.04	3.16	3.19	1.29	1.53	1.53	1.65	2.66	2.74	1.71	2.44	2.44	1.64	2.68	2.80
	5	4.83	2.48	6.03	4.35	6.32	9.45	18.7	24.4	7.25	14.2	18.3	8.23	16.3	21.3	8.79	17.3	22.6	8.08	16.0	21.0
ORIT-10	-5	3.21	1.42	4.12	2.77	4.34	7.88	15.5	20.2	5.83	11.3	14.4	6.69	13.2	17.2	7.13	14.0	18.1	6.59	13.0	16.9
0611-10	-15	1.95	0.63	2.62	1.57	2.79	6.48	12.6	16.3	4.60	8.77	11.0	5.35	10.5	13.6	5.70	11.1	14.2	5.28	10.4	13.4
	-25	1.00	0.05	1.49	0.70	1.61	5.23	10.1	12.8	3.55	6.58	8.01	4.19	8.12	10.4	4.46	8.52	10.7	4.15	8.07	10.4

ORIT – Valve Nomenclature/Ordering Instructions

ORI	т	- 6	-	0/50	-	7/8" ODF
Valve Type: Open on R ise of Inlet Pressure	Pressure Tap on Inlet Connection	Port Size in Eighths of an Inch		Adjustment Range – psig*		Connection ODF Solder or SAE Flare

* Other pressure ranges are available.

EVAPORATOR PRESSURE REGULATING VALVES

(S)ORIT-12, -15 and -20 Features

- High side pilot for improved temperature control and low ΔP operation
- Adjustable
- Optional solenoid "stop" feature to close valve during defrost
- Normally open design allows system evacuation without manual operator

These EPRs are pilot operated using "high side" pressure and require a pilot supply connection from the compressor discharge to operate. They are designed to be "normally open" providing an unparalleled ability to operate with virtually no suction line pressure drop. The pilot operated design does not require the "allowable evaporator pressure change" necessary with the direct acting models, and can be simply sized based on design evaporator temperature and available pressure drop across the valve at full load conditions.

Specifications

VALVE	PORT	ADJUST- MENT	STANDARD C RATINGS *MK		CONNEC- TIONS
ТҮРЕ	SIZE mm	RANGE bar	VOLTS/CYCLES	WATTS	ONE COLNED
(S)ORIT-12	19.8		24/50-60		1-1/8
(S)0RIT-15	25.4	0/6.90	120/50-60 208-240/50-60	10	1-3/8
(S)ORIT-20	20 33.3		120-208-240/50-60		1-5/8

*Available with junction box or conduit boss at no extra charge For voltage other than listed consult Bulletin 30-10.

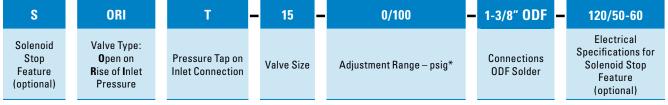
Capacities – **kW**

Capacities based on 15°C condensing temperature, 0°K superheat at the evaporator, and 14°K superheat at the valve.

									REFRIG	ERANT							
VALVE	EVAPORATOR TEMPERATURE		2	2			13	4a			40	4A			5	07	
TYPE	°C						PRE	SSURE	DROP A	CROSS	VALVE	– bar					
	Ŭ	0.03 0.10 0.40 0.70		0.03	0.03 0.10 0.4		0.70	0.03	0.10	0.40	0.70	0.03	0.10	0.40	0.70		
	5	7.64	13.9	27.3	35.5	6.09	11.0	21.4	27.4	7.41	13.5	26.6	34.6	7.17	13.0	25.7	33.5
(S)ORIT-12	-5			29.3	4.95	8.94	17.1	21.5	6.11	11.1	21.7	28.1	5.92	10.8	21.1	27.3	
(3)0111-12	-15	5.29	9.59	18.5	23.6	3.95	7.11	13.3	16.3	4.96	8.99	17.4	22.4	4.82	8.74	17.0	21.8
	-25	4.30	7.76	14.7	18.5		—	—	—	3.96	7.16	13.7	17.3	3.86	6.97	13.4	16.9
	5	12.6	22.9	44.8	57.9	10.1	18.2	34.9	44.0	12.3	22.3	43.7	56.5	11.9	21.6	42.3	54.8
(S)0RIT-15	-5	10.6	19.2	37.1	47.4	8.18	14.7	27.6	34.1	10.1	18.3	35.6	45.7	9.79	17.8	34.6	44.4
(3)0111-15	-15	8.75	15.8	30.1	37.8	6.53	11.7	21.1	25.0	8.20	14.8	28.4	36.0	7.97	14.4	27.7	35.2
	-25	7.11	12.8	23.7	29.0	—	—	—	—	6.55	11.8	22.1	27.4	6.38	11.5	21.6	26.9
	5		50.3	98.5	127	22.1	40.0	76.8	97.4	26.9	48.9	95.9	124	26.0	47.3	92.8	121
CODIT 20	-5	23.2	42.1	81.6	105	17.9	32.3	60.9	75.7	22.1	40.2	78.2	101	21.5	39.0	76.0	97.9
(S)ORIT-20	-15	19.2	34.7	66.3	83.7	14.3	25.6	46.8	56.1	18.0	32.5	62.6	79.5	17.5	31.6	61.0	77.7
	-25	15.6	28.0	52.4	64.5	—			—	14.4	25.9	48.8	60.8	14.0	25.2	47.8	59.6

Refrigerant Liquid Temperature Correction Factors

		LIQUID TEMPERATURE ENTERING VALVE °C											
REFRIGERANT	-15°	-10°	-5°	0°	5°	10°	15°	20° 30°		35°	40°		
	C	ORRE	CTIO	N FA	CTOR	, CF L	IQUI	D TEN	NPER	ATUR	E		
R-22	1.21	1.17	1.14	1.11	1.07	1.04	1.00	0.96	0.91	0.87	0.84		
R-134a	1.25	1.21	1.17	1.14	1.09	1.05	1.00	0.95	0.89	0.84	0.81		
R-404A	1.31	1.27	1.22	1.16	1.12	1.06	1.00	0.94 0.86		0.79	0.74		
R-507	1.32	1.28	1.22	1.16	1.12	1.06	1.00	0.94	0.86	0.80	0.75		


*ARI standard capacities are based on 38°C saturated liquid temperature. Use the correction factor for 40°C liquid temperature and the capacities at 5°C evaporator temperature to determine approximate ARI standard capacity ratings.

Example: The capacity of a (S)ORIT-12 using R-404A, evaporator temperature of -5°C, 0.1 bar pressure drop across the valve and a liquid temperature of 10°C, is equal to 11.1 x 1.06 = 11.8 kW.

Installation

When installing these valves with solder connections, the internal parts should be protected from overheating by wrapping the valve with a wet cloth.

(S)ORIT – Valve Nomenclature/Ordering Instructions

* Other pressure ranges are available.

EVAPORATOR PRESSURE REGULATING VALVES

(S)ORIT-PI-2, -3, -4 and -5 Features

- Piloted internally (No high side connection required)
- Superior corrosion resistance
- Optional solenoid "stop" feature to close valve during defrost
- Optional electric open feature for "two temperature operation"
- Manual lift stem (standard) to allow system evacuation

These EPRs are **P**iloted Internally using the natural pressure drop across the valve to operate and do not require a "high side" pilot connection. Like the (S)ORIT valves, the pilot operated design does not require the "allowable evaporator pressure change" necessary with the direct acting models, and can be simply sized based on design evaporator temperature and available pressure drop across the valve at full load conditions.

Specifications

	PORT	ADJUST- MENT	STANDARD C RATINGS *MK		CONNEC- TIONS
VALVE TYPE	SIZE mm	RANGE bar	VOLTS/CYCLES	WATTS	ODF SOLDER Inches
(S)ORIT-PI-2	12.7				5/8, 7/8, 1-1/8, 1-3/8
(S)ORIT-PI-3	19.1	0/6.90 or	24/50-60 120/50-60		7/8, 1-1/8, 1-3/8, 1-5/8
(S)ORIT-PI-4	25.4	5.17/10.3	208-240/50-60 120-208-240/50-60	10	1-1/8, 1-3/8, 1-5/8, 2-1/8
(S)ORIT-PI-5	31.8				1-3/8, 1-5/8, 2-1/8

*Available with junction box or conduit boss at no extra charge. For voltage other than listed consult Bulletin 30-10.

Capacities – kW

Capacities based on 15°C liquid temperature, 0°K superheat at the evaporator and 14°K superheat at the valve.

			REFRIGERANT														
VALVE	EVAPORATOR TEMPERATURE		2	2			13	4a			40	4A			50	D7	
ТҮРЕ	°C						PRES	SSURE I	DROP A	CROSS	VALVE	– bar					
	, i i i i i i i i i i i i i i i i i i i	0.03 0.1 0.4 0.7		0.03 0.1 0.4 0.7		0.03 0.1 0.4		0.4	0.7	0.03	0.1	0.4	0.7				
	5	2.78	8.66	20.3	27.6	2.22	6.92	16.6	20.9	2.70	8.40	19.6	27.0	2.61	8.13	18.9	26.2
	-5	2.33	7.26	17.7	22.6	1.81	5.63	13.1	16.1	2.22	6.93	16.3	21.8	2.15	6.71	15.7	21.2
(S)ORIT-PI-2	-15	1.93	6.01	14.4	17.9	1.45	4.51	9.99	11.7	1.81	5.63	13.6	17.1	1.76	5.47	13.2	16.7
	-25	1.57	4.90	11.3	13.6		—	—		1.44	4.50	10.5	12.9	1.41	4.38	10.3	12.7
	5	3.55	20.3	40.1	53.6	2.84	16.3	32.3	40.9	3.45	19.7	38.7	52.3	3.33	19.0	37.4	50.7
(S)ORIT-PI-3	-5	2.98	17.1	34.3	44.0	2.31	13.3	25.6	31.8	2.84	16.3	32.0	42.3	2.75	15.8	31.0	41.2
(3)0111-11-3	-15	2.47	14.2	27.9	35.2	1.85	10.7	19.7	23.5	2.31	13.3	26.3	33.4	2.24	12.9	25.6	32.6
	-25	2.01	11.6	22.0	27.1	—	—	—	—	1.85	10.7	20.5	25.5	1.80	10.4	20.1	25.0
	5	7.72	27.3	54.6	72.1	6.17	21.8	43.5	55.5	7.49	26.5	53.0	70.3	7.24	25.6	51.2	68.1
(S)ORIT-PI-4	-5	6.48	22.9	46.1	59.4	5.02	17.7	34.6	43.4	6.18	21.8	43.7	57.1	5.99	21.1	42.3	55.5
(3/0111-71-4	-15	5.36	18.9	37.6	47.8	4.02	14.2	26.8	32.6	5.02	17.7	35.4	45.3	4.88	17.2	34.5	44.2
	-25	4.36	15.4	29.8	37.2	—	—	—	—	4.01	14.2	27.7	34.9	3.91	13.8	27.1	34.2
	5			17.6	33.6	65.2	83.6	21.3	41.0	80.9	105	20.6	39.6	78.3	102		
(S)ORIT-PI-5	-5	18.4	35.4	69.1	89.3	14.3	27.2	52.1	65.8	17.6	33.7	66.1	85.7	17.0	32.7	64.2	83.3
	-15	15.3	29.2	56.4	72.1	11.4	21.6	40.5	49.8	14.3	27.3	53.1	68.2	13.9	26.6	51.7	66.6
	-25	12.4	23.6	44.9	56.4	—	—	—	—	11.4	21.8	41.7	52.8	11.1	21.2	40.8	51.7

Refrigerant Liquid Temperature – Correction Factors

	LIQUID TEMPERATURE ENTERING VALVE °C													
REFRIGERANT	-15°	-10°	-5°	0°	5°	10°	15°	20°	30°	35°	40°			
	C	ORRE	CTIO	N FA	CTOR	, CF L	IQUI	D TEN	IPER	ATUR	E			
R-22	1.21	1.17	1.14	1.11	1.07	1.04	1.00	0.96	0.91	0.87	0.84			
R-134a	1.25	1.21	1.17	1.14	1.09	1.05	1.00	0.95	0.89	0.84	0.81			
R-404A	1.31	1.27	1.22	1.16	1.12	1.06	1.00	0.94	0.86	0.79	0.74			
R-507	1.32	1.28	1.22	1.16	1.12	1.06	1.00	0.94	0.86	0.80	0.75			

*ARI standard capacities are based on 38°C saturated liquid temperature. Use the correction factor for 40°C liquid temperature and the capacities at 5°C evaporator temperature to determine approximate ARI standard capacity ratings.

Example: The capacity of a (S)ORIT-PI-3 using R-22, evaporator temperature of -15°C, 0.1 bar pressure drop across the valve and a liquid temperature of 10°C, is equal to $14.2 \times 1.04 = 14.8 \text{ kW}$.

Installation

When installing these valves with solder connections, the internal parts should be protected from overheating by wrapping the valve with a wet cloth.

(S)ORIT-PI Series – Valve Nomenclature/Ordering Instructions

S	ORI	T -	PI	2	7	S	E -	0/100	120/50-60
Solenoid Stop Feature (optional)	Valve Type: Open on Rise of Inlet Pressure	Pressure Tap on Inlet Connection	Piloted Internally	Port Size in 1/4 of an Inch	Fitting Size in 1/8 of an Inch	Solenoid Stop Feature (optional)	Electric Open Feature (optional)	Adjustment range psig*	Electrical specifications for Solenoid Stop Feature (optional)

* Other pressure ranges are available.

For complete information consult your nearest Sporlan Wholesaler or email europecold@parker.com and request Bulletin 90-20-2 and 90-20-2A.

Electric Expansion Valves

Sporlan Electric Expansion Valves (EEVs) are currently available in nominal R-410A capacities from 5 to 700 kW. Therefore, they are applicable on all the same types of systems found in the air conditioning and refrigeration industry as thermostatic expansion valves.

All Sporlan electric valves are designed for compatibility with all current halocarbon refrigerants, including CFCs, HCFCs, HFCs and R-410A. Specific system conditions will dictate which product is necessary to control the application. Details can be reviewed with the Sporlan Sales Engineer.

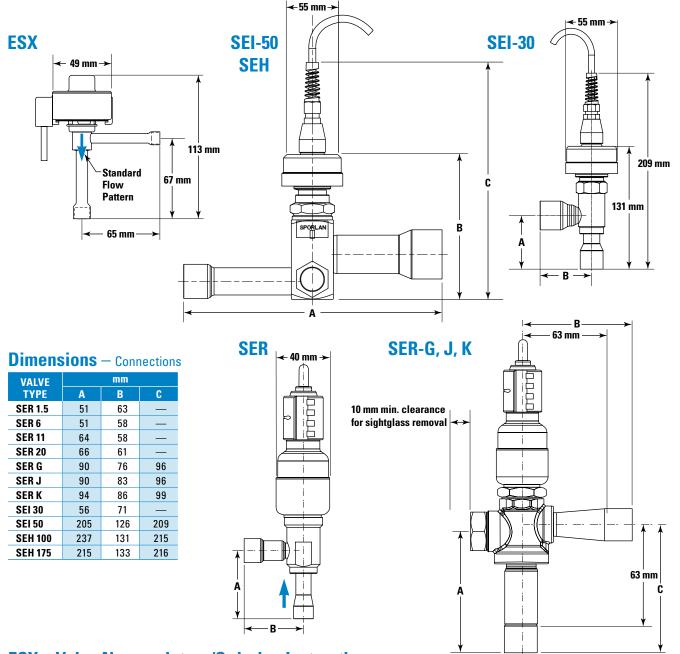
The ESX, SER, SEI and SEH are Electronically Operated Step Motor flow control valves, intended for the precise control of liquid refrigerant. Synchronized signals to the motor provide discrete angular movement, which translates into precise linear positioning of the valve piston. Valve pistons and ports are uniquely characterized, providing improved flow resolution and performance. The ESX, SER, SEI and SEH valves are easily interfaced with microprocessor based controllers, including Sporlan supplied controllers.

All Sporlan EEVs are rated for at least 42 bar MRP.

SEI-50

Specifications

VALVE TYPE	INLET – Inches STANDARD CONNECTIONS In BOLD	OUTLET – Inches STANDARD CONNECTIONS In BOLD	CONFIGURATION	CABLE LENGTH – m STANDARD CONNECTIONS In BOLD
ESX 14	5/16 ODF, 3/8 ODF	5/16 ODF, 3/8 ODF, 1/2 ODF	Angle	1.5, 3
ESX 18	5/16 ODF, 3/8 ODF	5/16 ODF, 3/8 ODF, 1/2 ODF	Angle	1.5, 3
ESX 24	5/16 ODF, 3/8 ODF	5/16 ODF, 3/8 ODF, 1/2 ODF	Angle	1.5, 3
SER 1.5*	3/8, 1/2, 5/8 ODF	3/8, 1/2 , 5/8	Angle	3 , 12
SER 6*	3/8, 1/2 , 5/8 ODF	3/8, 1/2, 5/8 , 7/8	Angle	3 , 12
SER 11*	3/8, 1/2, 5/8 ODF	1/2, 5/8, 7/8 , 1-1/8 ODF	Angle	3 , 12
SER 20*	1/2, 5/8, 7/8 , 1-1/8 ODF	5/8, 7/8, 1-1/8, 1-3/8 ODF	Angle	3 , 12
SEI 30*	5/8, 7/8, 1-1/8 ODF	5/8, 7/8, 1-1/8, 1-3/8 ODF	Angle	3 , 6, 9, 12
SEI 50	7/8, 1-1/8 , 1-3/8 ODF	7/8, 1-1/8, 1-3/8 , 1-5/8 ODF	Straight through	3 , 6, 9, 12
SEH 100	1-1/8 , 1-3/8 ODF	1-3/8, 1-5/8 ODF	Straight through	3 , 6, 9, 12
SEH 175	1-1/8, 1-3/8, 1-5/8 ODF	2-1/8 ODF	Straight through	3 , 6, 9, 12
SER G*	5/8 ODF	7/8 ODF	Angle	3
SER J	7/8 ODF	7/8 ODF	Angle	3
SER K	1-1/8 ODF	1-1/8 ODF	Angle	3


* Suitable for bi-directional applications.

Capacities – kW

WALVE	REFRIGERANT											
VALVE TYPE		134a			404A			407C			410A	
1111	5°C	-10°C	-20°C	5°C	-10°C	-20°C	5°C	-10°C	-20°C	5°C	-10°C	-20°C
ESX 14	3.2	3.6	3.4	2.8	3.0	2.9	3.9	4.3	4.1	5.4	6.0	5.8
ESX 18	5.7	6.3	6.0	5.0	5.3	5.1	6.9	7.6	7.2	9.7	10.5	10.2
ESX 24	11.5	12.6	12.1	10.0	10.7	10.1	13.8	15.1	14.5	19.3	21.1	20.5
SER 1.5*	3.7	4.1	3.9	3.3	3.5	3.3	4.5	4.9	4.7	6.3	6.9	6.7
SER 6*	15.0	16.5	15.7	13.0	13.9	13.2	18.0	19.7	18.9	25.2	27.5	26.7
SER 11*	27.5	30.2	28.9	23.8	25.5	24.1	33.1	36.1	34.6	46.2	50.3	49.0
SER 20*	49.9	55	52.5	43.3	46.4	43.9	60.2	65.6	62.9	83.9	91.5	89.1
SEI 30*	74.9	82.4	78.8	65.0	69.7	65.8	90.2	98.4	94.4	126	137	134
SEI 50	125	137	131	108	116	110	150	164	157	210	229	223
SEH 100	250	275	262	217	232	219	301	328	315	420	458	445
SEH 175	437	481	459	379	406	384	526	574	550	735	801	779
SER G*	66.3	73	69.8	69.8 57.5 61.7		58.3	79.9	87.2	83.6	112	122	118
SER J	119	131	126 104 11		111	105	144	157	150	201	219	213
SER K	216	238	228	188	201	190	261	284	273	420	458	445

* Suitable for bi-directional applications.

Specifications

ESX – Valve Nomenclature/Ordering Instructions

ESX	-14	B
Valve Model	Orifice Diameter 14= 1.4 mm 18 = 1.8 mm 24 = 2.4 mm	Connections 5/16 x 5/16 ODF A 3/8 x 3/8 ODF B 3/8 x 1/2 ODF

SEI, SEH(I) or SER(I) – Valve Nomenclature/Ordering Instructions

SEH	(1)	-	175	1-1/8″	х	2-1/8″	ODF	_	10	_	S
Valve Model	Indicating Sightglass optional (not availavble on SER, SEI)		Valve Nominal Capacity	Inlet Fitting 7/8", 1-3/8" and 1-5/8" available*		Outlet Fitting 1-3/8", 1-5/8" and 2-1/8" available*	Fitting type ODF only		Cable Length 10' standard, 30' and 40' available		Stripped and Tinned cable ends, Packard Weather PAK™ also available

* Not all fitting sizes are available on all valves.

For complete information consult your nearest Sporlan Wholesaler or email europecold@parker.com and request Bulletin 100-20-1 and 100-20-2.

Electric Evaporator Pressure Regulating Valves

The CDS valves are designed for more precise and energy efficient control of temperatures in evaporators. Proper temperature is obtained by regulating refrigerant flow in the evaporator in response to signals generated by an electronic controller and sensor combination. The valves are built around balanced ports, which allows input power of only 4 watts, less than one quarter

of the power used by older heat motor and analog designs. When not actively stepping, power to the motor is removed for further energy savings. The step motors used are standard 12-volt DC bipolar designs, which in concert with the integral gear reduction, give the valves unsurpassed accuracy and repeatability over the entire operating range. Since the valves are powered from an external controller, no pilot lines or high to low side bleeds are required. The properly applied CDS valve and controller can replace standard mechanical evaporator pressure regulators (EPR), suction stop solenoid valves, and conventional thermostats.

With different seating materials, CDS-16 valves may be applied as heat reclaim, head pressure control, or liquid line differential valves. CDS-9 and -17 are suitable for these applications as supplied. Contact Sporlan for more information.

Due to the step motor design, the CDS series are the first evaporator control valves that may be sized to contribute NO additional pressure drop to the suction line.

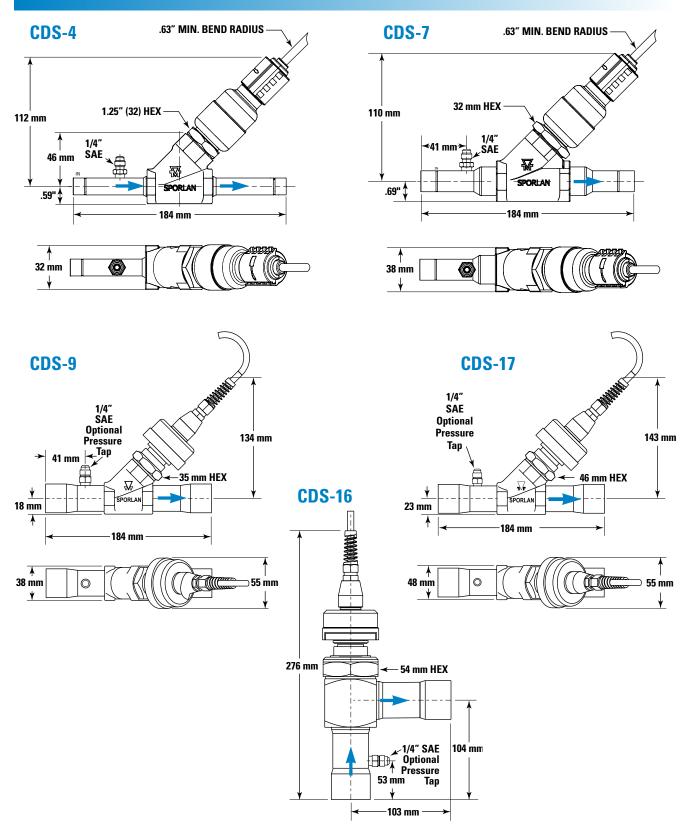
Simplified cartridge design allows all moving parts to be replaced as a unit. Only the valve body is left in the line. This will allow maintenance or repair without unsweating the entire valve.

Specifications

	(Standard Connections and Cable Lengths are in BOLD type.)										
ТҮРЕ	ODF SOLDER – Inches		CABLE LENGTH m	CABLE ENDS							
CDS-4	1/2, 5/8, 7/8	Straight Through	3								
CDS-7	5/8, 7/8, 1-1/8, 1-3/8	Straight Through	3								
CDS-9	5/8, 7/8 , 1-1/8, 1-3/8	Angle or Straight Through	3	Stripped and Tinned							
CDS-16	1-3/8	Angle	3								
CDS-17	1-3/8, 1-5/8 , 2-1/8	Straight Through	3								

Capacities – kW

												R	FRIG	ERAN	T										
TVDE	EVAPO-			13	4a					404A	/507					40	7C					41	DA		
ТҮРЕ	RATOR TEMP. °C									PR	ESSU	RE DR	OP A	CROS	S VAI	VE –	bar								
		0.03	0.06	0.1	0.2	0.4	0.7	0.03	0.06	0.1	0.2	0.4	0.7	0.03	0.06	0.1	0.2	0.4	0.7	0.03	0.06	0.1	0.2	0.4	0.7
	0	2.62	3.68	4.72	6.63	9.10	11.4	3.07	4.31	5.53	7.76	10.9	14.4	3.22	4.52	5.8	8.14	11.5	14.7	4.17	5.86	7.52	10.6	14.8	19.5
CDS-4	-10	2.12	2.98	3.83	5.30	7.09	8.60	2.53	3.55	4.55	6.39	9.06	11.6	2.63	3.69	4.74	6.65	9.18	11.5	3.49	4.9	6.30	8.84	12.4	16.3
603-4	-20	1.69	2.37	3.01	4.09	5.3	6.07	2.05	2.88	3.69	5.18	7.17	9.01	2.11	2.97	3.81	5.29	7.11	8.67	2.88	4.04	5.19	7.28	10.2	13.0
	-30	1.31	1.82	2.29	3.03	3.70	3.83	1.63	2.29	2.94	4.09		6.72	1.67		2.97	4.04	5.27	6.09	2.33	3.27		5.89	8.04	10.0
	0	7.49	10.4	13.3	18.3	24.5	29.5		12.0	15.3	21.1	29.2		9.21	12.7	16.2	22.4	31.6	39.4	11.8	16.4	20.8	28.8		51.7
CDS-7	-10		8.41	10.7	14.5	18.7	21.1	7.20	9.97	12.7	17.5	24.9	31.0	7.51	10.5	13.3		24.8	30.1	9.98	13.8	17.5	24.2		
	-20		6.59	8.29	11.0	13.3	13.8	5.87	8.14	10.3	14.3	19.4	23.5		8.38	10.6	14.5	18.8	21.6		11.5	14.5	20.1		34.8
	-30	3.65	5.01	6.21		8.53	8.53	4.64	6.49	8.24	11.2	14.6		4.68	6.50	8.19	10.9	13.3	13.9	6.63	9.29	11.9	16.3		25.9
	0	11.0	15.5	19.8		37.5	46.6	13.0	18.0	22.9		44.3	59.5	13.6	19.0	24.2	33.7	47.5	60.5	17.6	24.5		43.4	60.3	78.6
CDS-9	-10	8.88	12.5	15.9	21.9	29.1	34.9	10.7	14.9	19.0	26.4	37.4	47.6	11.1	15.6	19.9	27.7	37.8	47.3	14.8	20.6			50.7	67.4
	-20		9.80	12.4	16.8	21.6		8.65	12.1	15.5	21.5	29.6	36.9		12.4	15.8	21.8	-	35.3		17.1		30.2	42.3	
	-30	5.42	7.51	9.44	12.4	14.9		6.84	9.60	12.3		22.6		6.92	9.67	12.3		21.5	24.4	9.77	13.7	17.6	24.4	33.1	41.0
	0		25.9	32.8	45.3	60.1	71.5	21.5	29.7	37.8	52.2	72.1		22.8	31.5	40.0		77.6	96.4		40.5	51.4	/1.1	98.3	128
CDS-16	-10	14.9	20.7	26.3	35.5	45.5	50.7	17.8	24.7	31.3		61.0	75.9			33.0		60.9	73.2		34.2	-	59.9	82.8	109
	-20	11./	16.2	20.4	26.8	32.2	32.8	14.5	20.2	25.6	35.4	47.6	57.2	14.8	20.7	26.2		45.8 32.2	51.9	20.4	28.4	36.0	49.8		85.1
	-30 0	9.01	12.3 27.8	15.Z	19.0 49.4	20.3 67.6	20.3 83.5	11.4 23.2	16.0 32.3	20.3 41.1	27.5 57.3	35.5 79.7	40.3 108	11.5 24.4	16.0 34.0	20.1 43.4	26.6 60.4	32.2 85.9	33.1 109	16.4 31.6	22.9 43.9	29.2 56.0	40.0 78.0	53.0 109	62.8 142
	-10	20.0 16.1	22.6	28.8	49.4 39.5	52.3	63.5 62.1	23.2 19.2	32.3 26.7	41.1 34.0	57.3 47.3	67.6	85.8	24.4	27.9	43.4 35.6	49.6	68.2	84.8	26.5	43.9 36.9	JU.U	65.5	91.2	142
CDS-17	-10	10.1		20.0		38.6	42.6	15.6	20.7	27.7	47.3 38.6	53.3	66.3					52.5	62.9		30.5	39.0			96.6
	-20	9.83	13.6	17.0	20.3	26.2	26.5	12.4	21.7 17 Δ	22.2	30.5	40.7	48.8	12.6	17.5	22.2	30.0	38.4	42.9	177	24.8	31.7	44.1		73.6
	-30	0.00	15.0	17.0	LL.L	20.2	20.0	12.4	17.4	22.Z	50.5	40.7	40.0	12.0	17.5	22.2	50.0	50.4	42.3	17.7	24.0	51.7	44.1	55.7	75.0


Capacities based on 16°C liquid and 14°C superheated vapor.

	LIQUID TEMPERATURE ENTERING TEV °C											
REFRIGERANT	-10°	-5°	0°	5°	10°	15°	20°	25°	30°	35°	40°	
		COF	RECT	ION F/	ACTOF	, CF L	IQUID	TEMP	ERAT	URE		
134a	1.21	1.17	1.13	1.09	1.05	1.01	0.97	0.92	0.88	0.84	0.79	
404A/507	1.27	1.22	1.17	1.12	1.07	1.01	0.96	0.90	0.84	0.78	0.72	
407C	1.21	1.17	1.13	1.09	1.05	1.01	0.97	0.92	0.88	0.84	0.79	
410A	1.21	1.17	1.13	1.09	1.05	1.01	0.97	0.92	0.87	0.83	0.78	

Use the correction factor for 38°C liquid temperature and the capacities at 5°C evaporator temperature to determine ARI standard capacity ratings.

Example: The capacity of a CDS-7 using R-407C, evaporator temperature of -25°C, 0.06 bar pressure drop across the valve and a liquid temperature of 10°C is equal to (7.41 x 1.05) 7.78 kilowatts.

These factors correct for net refrigerating effect and are based on an average temperature of -15°C. However, they may be used for any evaporator temperature from -30°C to 5°C since the variation in the actual factors across this range is insignificant.

CDS – **Valve Nomenclature/Ordering Instructions** The CDS-16 is the only angled valve. The CDS-4, CDS-7, CDS-9 and CDS-17 are straight through valves.

CDS -	т	-	17	- 1-3/8 x 1-3/8 ODF -	20	- S	Angle
Controls Discharge Stepmotor	Optional In Pressure T		Model Number	Fitting Size	Cable Length 20' standard, others available	S = Stripped and tinned cable ends. Custom Connectors available	Used only if angled configuration CDS-16 Only

Electric Discharge Gas Bypass Valves

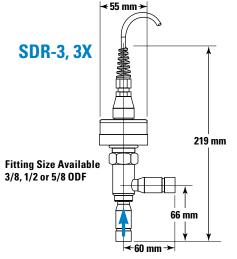
SDR series valves are Step Discharge Regulators, or electrically operated discharge gas bypass valves. Unlike previous mechanical discharge gas bypass valves that only control a downstream pressure, the SDR series offers direct temperature control of air or liquid. The valves use the same 12 DC bipolar step motor as all other Sporlan step motor operated valves, including the CDS valves above. Balanced pistons and ports, uniquely characterized for hot gas flow, have been incorporated into the design. Seating materials, motors and gears have all been laboratory and field proven in high temperature gas applications.

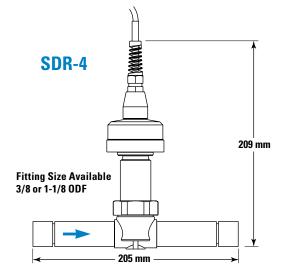
With capacities up to 25 nominal R-22 tons, the SDR series is suitable for use in small process chillers and environmental chambers, as well as large direct expansion air conditioning applications. The valves may be controlled by third party controllers or by the Sporlan TCB interface/controller shown below. SDR valves are normally installed in the same manner as mechanical discharge gas bypass valves; in a bypass branch of the discharge gas line. The valves may be piped to feed into the evaporator at the distributor, downstream of the evaporator, or at the compressor suction. Contact Sporlan for additional piping recommendations. When applied with a third party controller or DDC building management system, the SDR can be used with the IB or TCB as an interface to the existing system. For stand-alone control, the SDR and TCB with sensor will allow close temperature control of the air or liquid stream. See the section below for information on the TCB and IB.

The SDR valves are tight seating and will act as solenoid valves for shut off.

Specifications

ТҮРЕ	CONNECTIONS Inches	CONFIGURATION	CABLE LENGTH Feet	CABLE ENDS	
SDR-3	3/8, 1/2, 5/8 ODF	Angle	10.00	0.04	
SDR-3X	3/8, 1/2, 5/8 ODF	Angle	10, 20, 30, 40	S-Stripped and Tinned	
SDR-4	7/8, 1-1/8 ODF	Straight through	30,40	anu inneu	


Discharge Bypass Valve Capacities – kW


					MIN	IMUM	ALLOW	ABLE	EVAPO	RATOR	TEMP	ERATU	RE AT F	REDUCI	ED LOA	D°C			
REFRIGERANT	VALVE		5°C			3°C			-7°C			-18°C			-29°C			-40°C	
NEFNIGENANT	TYPE							CO	NDENS	ING T	EMPER	ATURE	°C					_	
		26	38	49	26	38	49	26	38	49	26	38	49	26	38	49	26	38	49
	SDR-3	18.9	24.2	30.5	18.9	23.5	29.1	18.6	23.5	28.4	17.2	21.7	26.6	16.1	20.3	24.9	15.1	19.3	23.8
22	SDR-3X	34.3	44.1	55.7	34.7	44.5	56.0	34.7	44.5	56.0	35.0	44.8	56.7	35.4	45.5	57.4	35.7	46.2	58.1
	SDR-4	62.7	88.2	122	67.9	92.4	125	69.3	98.0	127	73.2	98.4	130	75.6	100	131	77.0	104	132
	SDR-3	13.3	16.5	19.3	12.6	15.4	18.2	12.3	14.7	17.9	10.9	13.3	16.5	9.8	12.3	15.4	9.1	11.6	14.7
134a	SDR-3X	24.1	30.0	35.2	23.1	29.2	35.1	22.9	27.9	35.3	22.1	27.5	35.1	21.5	27.5	35.6	21.6	27.7	35.9
	SDR-4	46.6	64.4	83.3	49.7	66.9	85.4	50.8	67.6	86.1	53.2	69.7	87.5	54.6	70.7	88.6	55.3	71.4	89.3
	SDR-3	21.0	25.6	30.1	22.1	25.9	29.8	21.4	25.2	29.4	19.6	23.5	27.7	17.5	21.0	26.3	16.8	20.3	25.2
404/507	SDR-3X	38.1	46.7	55.0	40.4	49.1	57.3	39.9	47.8	58.1	40.0	48.4	58.9	38.4	47.1	60.6	39.9	48.7	61.5
	SDR-4	69.7	91.7	111	80.9	104	126	83.0	105	127	87.5	109	130	85.1	104	123	93.1	115	136
	SDR-3	18.9	23.1	28.7	18.2	23.1	27.3	17.9	21.7	27.0	16.5	20.3	25.2	15.1	18.9	23.8	14.0	17.9	22.8
407C	SDR-3X	34.3	42.2	52.5	33.4	43.8	52.6	33.3	41.1	53.2	33.6	41.9	53.7	33.0	42.4	55.0	33.2	42.8	55.5
	SDR-4	64.1	87.5	119	69.3	97.3	123	71.1	96.3	125	75.6	97.3	128	78.4	100	132	80.5	103	135
	SDR-3	31.9	39.6	47.7	31.9	39.6	47.7	31.9	39.6	47.6	31.9	39.6	47.7	31.9	39.6	47.7	—		
410A	SDR-3X	57.0	71.1	85.6	57.3	71.1	85.6	57.3	71.1	85.6	57.3	71.1	85.6	57.3	71.1	85.6	—	—	—
	SDR-4	104.0	139.8	174.0	112.9	146.5	179.4	115.7	148.7	85.6	122.4	154.1	185.9	126.3	157.5	188.9		—	

Note: Capacities are based on discharge temperature 28°C above isentropic compression, 55°C condensing temperature, 0°C subcooling, 13°C superheat at the compressor and includes both the hot gas bypassed and the liquid refrigerant for desuperheating, regardless of whether the liquid is fed through the system thermostatic expansion valve or auxiliary desuperheating expansion valve.

For complete information consult your nearest Sporlan Wholesaler or email europecold@parker.com and request Bulletin 100-60.

Dimensions

SDR – Valve Nomenclature/Ordering Instructions

S	DR	- 4 -	7/8 x 7/8	10	S
Step Motor	Discharge	Nominal Size	Connetions ODF	Cable Length 10' standard,	S = Stripped and tinned cable ends.
Operated	Regulator	3 or 4 Available	SDR-3, 3x - 3/8, 1/2, 5/8 SDR-4 - 7/8, 1-1/8	20,30,40 also available	Custom Connectors available

Electric Valve Controllers

Sporlan offers a variety of controllers for use in refrigeration and air conditioning systems. Applications include self-contained food service equipment, cold rooms and chillers. With over 80 different models, Sporlan can satisfy almost any customer requirement.

Small, standalone controllers include the compact Kelvin II and larger Superheat and Refrigeration controllers. All provide true pressure/temperature superheat control of any system using Sporlan Electric Expansion Valves (EEVs). Chiller controllers offer true pressure/temperature superheat control for two Sporlan EEVs and are available in Fahrenheit/psi or Celsius/Bar versions.

Sporlan offers purpose built controllers, such as subcoolers for supermarket refrigeration, head pressure, temperature only and pressure only.

Cold rooms can be controlled with RCS, which has onboard remote communication, and master-slave settings for defrost control. Included real time clocks allow defrost initialization times to be set precisely and relays allow control of fans, solenoids, alarms and compressors. Many of the controllers can be customized for specific needs, or supplied in an enclosure.

CONTROLLER PACKAGES	DISPLAY	COMMUNICATION	RELAYS	REFRIGER- ANTS	INPUTS*	VALVES
Kelvin II <i>s</i>	No	RS-485	None		1 Press, 3 Temp.	1 SER, SEI, ESX, SEHI, SDR or CDS
Kelvin II <i>sd</i>	4 Alphanumeric	RS-485, USB	None		1 Press, 3 Temp.	1 SER, SEI, ESX, SEHI, SDR, CDS, or 2 PWM
RCS	3 Alphanumeric	RS-485	Four	R-22,	1 Press, 4 Temp.	1 SER, SEI, ESX or SEHI
Subcooler	2 Numeric	None	None	R-134a, R-404A,	1 Press, 2 Temp.	1 SER, SEI, ESX or SEHI
Chiller	2 Numeric	None	Three	R-507,	1 Press, 4 Temp.	2 SER, SEI, ESX or SEHI
Chiller European	2 Numeric (C°/Bar)	None	Three	R-410Á,	1 Press, 4 Temp.	2 SER, SEI, ESX or SEHI
Pressure	2 Numeric	None	None	R-407C	1 Press	1 CDS or 1 SDR
Dual Pressure Control	2 Numeric	None	None	Not all	2 Press	2 CDS or 2 SDR or 1 of each
Temperature Control	2 Numeric	None	None	refrigerants	1 Temperature	1 CDS or 1 SDR
Dual Temp. Control	2 Numeric	None	None	are available on	2 Temperature	2 CDS or 2 SDR or 1 of each
Superheat	2 Numeric	None	None	all models.	1 Press, 2 Temp.	1 SER, SEI, ESX, or SEHI
Superheat Low Temp.	2 Numeric	None	None		1 Press, 2 Temp.	1 SER, SEI, ESX, or SEHI
Refrigeration	2 Numeric	None	None		1 Press, 2 Temp.	1 SER, SEI, ESX, or SEHI

Notes: * See accessories below, only Sporlan approved sensors may be used. ** All products control temperature, other functions not available on all models.

ACCESSORIES	ITEM NUMBERS	APPLICATION
0-150 psig Pressure Transducer 5' Cable (Green Color Code)	953091	RCS and Kelvin except R-410A
0-300 psig Pressure Transducer 5' Cable (Black Color Code)	952740	All except TCB, IB
0-150 psig Pressure Transducer 10' Cable (Green Color Code)	953092	RCS and Kelvin except R-410A
0-300 psig Pressure Transducer 10' Cable (Black Color Code)	952503	All except TCB, IB
0-500 psig Pressure Transducer 10' Cable (Yellow Color Code)	952505	Head Pressure and CO ₂ Applications only
Surface Sensor - 2K (Black Color Code)	952662	All except RCS and Kelvin
Surface Sensor - 3K (White Color Code)	952551	RCS and Kelvin
Well Sensor	952795	All except IB, TCB less Potentiometer, RCS, and Kelvin
Air Sensor	952669	All except IB, TCB less Potentiometer, RCS, and Kelvin
SMA-12 Valve Actuator	953276	All 12 Volt DC Step Motor Valves

TCB Temperature Control Board/IB Interface Board

The TCB interface/controller allows all Sporlan step motors to be modulated in response to an externally generated signal. The IB and TCB accept a 4-20 milliamp, or 0-10 volt DC inputs

and stroke the valve proportionately to that signal. The TCB and IB allow use of the CDS or SDR valves with an existing DDC system or other generic temperature controller for hot gas bypass, evaporator temperature, or reclaim applications. While the TCB and IB will control Sporlan's line of SEI and SEH step motor electric expansion valves, an external signal must be generated in response to superheat and not simply temperature.

When the TCB is purchased with optional set point potentiometer and sensor, the TCB becomes a stand alone single point temperature control for the CDS or SDR valves. The sensor is installed in the air stream or affixed to the pipe containing the liquid to be controlled. The potentiometer is set to the temperature desired, and the TCB will modulate the valve to maintain tight temperature control. The TCB can be configured to "close on rise" or "open on rise" and requires only an external 24 volt AC 40 VA power source. The TCB incorporates separate "pump down", "open valve", and "close valve" contacts for use with external relays to allow even greater control choices. The TCB and IB have screw terminals for easy connections, and should be mounted in a control panel or other enclosure.

SMA-12 Step Motor Actuator

The SMA-12 is designed to diagnose systems with step motor valves by proving operation of the step motor. The unit is powered by two 9 volt alkaline batteries and will power any standard 12-volt DC bipolar step motor. Step rate is selectable at 1, 50, 100 or 200 steps per second and will stroke the motor in both directions. Red lamps indicate continuity of the mo-

tor windings and battery power, and binding posts provide quick connection of the motor leads. In the event of a controller failure, the SMA-12 can manually open or close the valve or step it to any position. The SMA-12 is the basic troubleshooting tool for all step motor valve operated systems.

ITEM NUMBER	DESCRIPTION	CONNECTOR
953276	SMA-12	Binding Post
953277	SMA-12 w/Pigtail	Packard Pigtail Item #958112

INTERFACE BOARDS	INPUT	VALVES*
TCB	4-20 ma, 0-10 VDC	SDR, CDS
TCB with Potentiometer	Temperature Sensor	SDR, CDS
IB-ESX	4-20 ma, 0-10 VDC	ESX
IB-1	4-20 ma, 0-10 VDC	SDR-3
IB-3 IB-6	4-20 ma, 0-10 VDC	SDR-3, 3X
IB-6	4-20 ma, 0-10 VDC	SDR-4, CDS-9, -16, -17, Y1177

* Interface boards may be used with electric expansion valves SER, SEI, SEHI, ESX only when used with external superheat controllers. For complete information consult your nearest Sporlan Wholesaler or email europecold@parker.com and request Bulletin 100-50-1 and 100-50-2.

OIL LEVEL CONTROL SYSTEM

Sporlan's Oil Level Control System Components were developed to offer the refrigeration industry an oil level control system of the highest quality. The heart of the system is the Oil Level Control which when matched with the Oil Reservoir and Oil Differential Check Valve maintains a minimum oil level in the compressor crankcase during all phases of system operation.

Oil Reservoirs

Sporlan oil reservoirs are holding vessels for stand-by oil necessary for the operation of a commercial refrigeration or air conditioning system. The oil reservoir is shipped with service valves so the vessel can be isolated from the rest of the system.

Features and Benefits

- Sightglass ports with float ball indicators for oil level monitoring
- 3/8" male flare rotalock valves shipped with oil reservoir allow for easy adjustment when piping into system
- 3/8" male flare vent port for connection to the suction line
- Mounting studs and brackets
- 35 bar maximum working pressure
- Powder coating passes 500 hour ASTM salt spray

Specifications

MODEL NO.	TOTAL CAPACITY liters	'A' CAPACITY liters		NUMBER of SIGHT- GLASSES	mm	SHELL DIAMETER mm
POR-2	7.6	2.8	2.8	2	457	152
POR-3	11.4	2.8	5.7	3	584	152
POR-4	15.1	2.8	10.4	3	914	152

'A' capacity is the capacity to the first sightglass.

'B' capacity is the capacity **between** the two sightglasses for the POR-2 and the **top** and **bottom** sightglasses for the POR-3 and POR-4.

Oil Differential Check Valve Types OCV-5, OCV-10, OCV-20 and OCV-30

The Sporlan Oil Level Differential Check Valve (OCV) is installed on the 3/8" SAE fitting on top of the OR-1-1/2, and allows pressure

Selection & Specifications

to be relieved from the reservoir to the suction as required to maintain a pressure in the reservoir at a preset level above the suction pressure. The pressure differential created by the OCV assures oil flow from the reservoir to the Oil Level Control providing there is adequate oil in the reservoir.

The OCV will only relieve pressure from the reservoir in excess of its fixed set point. Systems with fluctuating suction pressure as a result of compressor unloaders, staging or other suction line controls must be fitted with an OCV with a differential greater than the suction pressure fluctuation to assure oil flow from the oil reservoir through the oil level control to the compressor crankcase.

Sporlan offers OCV's with a 0.35 bar, 0.7 bar and 1.4 bar fixed differential setting. However, Sporlan recommends the use of an OCV-20 or OCV-30 on all field built up applications.

MODEL NO.	PRESSURE DIFFERENTIAL SETTING – bar
0CV-5	0.35
OCV-10	0.70
OCV-20	1.4
OCV-30	2.1

Oil Level Controls

0

0

0

(UL) and

l istad

The purpose of the Sporlan Oil Level Control is to regulate the flow of oil to the compressor crankcase

to maintain a minimum oil level as specified by the compressor manufacturer for any given application. The Oil Level Control is adjustable between 1/2 sightglass and 1/4 sightglass at any pressure differential between 0.35 and 6.2 bar. As the level of oil is lowered in the compressor crankcase by being pumped out, the float of the Oil Level Control is lowered and opens a needle valve allowing oil to flow from the oil reservoir to the compressor crankcase.

MODEL NUMBER	PRODUCT TYPE	FLANGE TYPE	COMPRESSOR MANUFACTURER and MODEL	CONFIGURATION TOP VIEW
OL-60CH	6.2 bar Max Differential	3 bolt	See page 61 for compressor adaptor requirements.	
OL-60XH		3 bolt		
OL-60ZH		4 bolt		
OL-60FH		3 bolt		
OL-60HH-6		3 bolt		
OL-60NH-2		3 bolt		
S-OL	Sightglass	Included w c	ith adaptor kits on page 61 (except AOL-R) r may be purchased separately.	

For complete information consult your nearest Sporlan Wholesaler or email europecold@parker.com and request Bulletin 110-10 and 110-10-1.

OIL LEVEL CONTROL SYSTEM

Compressor Adaptor Requirements

COMPRESSOR MANUFACTURER	COMPRESSOR Model Number	COMPRESSOR Attachment Pattern	SPORLAN ADAPTOR KIT NUMBER	SEALING METHOD	SIGHTGLASS	
Bitzer	2 KC, 2JC, 2HC, 2GC, 2 FC, 2EC, 2DC, 2CC, 4FC, 4EC, 4DC, 4CC	1-1/8″ Thread	AOL-MA/TE	Use seal provided	Use sightglass provided with adaptor	
	4VC, 4TC, 4PC, 4NC	3 Bolt, 1-7/8" B.C. (47.6 mm B.C.)	None	Use seal provided	Use sightglass from compressor	
	4J, 4H, 4G, 6J, 6H, 6G, 6F	4 Bolt, 50 mm B.C.	None with the OL-60ZH control	Use seal provided with control	Use sightglass from compressor	
	8GC, 8FC	3 Bolt, 1-7/8" B.C. (47.6 mm B.C.)	AOL-R-1	Use seal provided	Use sightglass from compressor	
	HA3-5, HG3-5, AM/ F2-5	4 Bolt, 50 mm B.C.	AOL-BO ①	Use Teflon tape	Use sightglass provided with adapto	
Bock	HA8, HG6					
	F	3 Bolt, 1-7/8" B.C. (47.6 mm B.C.)	AOL-R-1	Use seal provided	Use sightglass from compressor	
Bristol	<u> </u>	15/16" – 20 Thread	AOL-BR/TR Use seal provided		Use sightglass provided with adaptor	
	EA, ER	3 Bolt, 1-7/8" B.C. (47.6 mm B.C.)	AOL-R-1	Use seal provided	Use sightglass from compressor	
Carrier	6E Front	3 Bolt, 1-7/8" B.C. (47.6 mm B.C.)	None		Use sightglass from compressor	
	DA, DR, 5F, 5H, 6D, 6E	1-1/2" – 18 Thread	AOL-C		Use sightglass provided with adaptor	
Copeland	Over 17 kW	3 Bolt, 1-7/8" B.C. (47.6 mm B.C.)	AOL-R-1	Use seal provided	Use sightglass from compressor	
	Under 3.7 kW 🕲	1-1/8″ – 12 Thread	AOL-A	Use seal from compressor	Use sightglass provided with adaptor	
	8R, 3D Front, 2D, 4D, 6D	3 Bolt, 1-7/8" B.C.(47.6 mm B.C.)	AOL-R-1	Use seal provided	Use sightglass from compressor	
	8D	3 Bolt, 1-7/8" B.C.(47.6 mm B.C.)	Use control with standard length arms with AOL-R-1 adaptor. Use sightglass from compressor			
Dorin	4 cyc-15 HP	3 Bolt, 1-7/8" B.C.(47.6 mm B.C.)		Contact Sporlan		
Dunham-Bush	Big 4	3 Bolt, 1-7/8" B.C.(47.6 mm B.C.)	AOL-R-1	Use seal provided	Use sightglass from compressor	
Frascold	All models	3 Bolt, 1-7/8" B.C.(47.6 mm B.C.)	AOL-R-1	Use seal provided	Use sightglass from compressor	
Maneurop	MT, LT	1-1/8" – 18 Thread	AOL-MA/TE	Use seal provided	Use sightglass provided with adaptor	
Prestcold	E, C	42 mm Thread	AOL-P	Use Teflon tape	Use sightglass provided with adaptor	
Tecumseh	P, R, S, PA, RA, SA, CK, CM, CH, CG	1-1/8" – 12 Thread	AOL-A	Use seal from compressor	Use sightglass provided with adaptor	
	_	1-1/8" – 18 Thread	AOL-MA/TE	Use seal provided	5 - 5 F	
	M, R	3 Bolt, 1-7/8" B.C.(47.6 mm B.C.)	AOL-R-1	Use seal provided	Use sightglass from compressor	
Trane	К	3/4" NPT	AOL-K-1	Use Teflon tape		
	_	15/16" – 20 Thread	AOL-BR/TR	Use seal provided	Use sightglass provided with adaptor	
York	GC, GS, JS	3 Bolt, 1-7/8" B.C.(47.6 mm B.C.)	AOL-R-1	Use seal provided	Use sightglass from compressor	
Sporlan Sightglass Provided with all a	porlan Sightglass S-OL rovided with all adaptor kits except the AOL-R-1, but can be purchased eparately in kit form.			Kit includes: S-OL sightglass, quad ring, O-ring, 3 screws, and 3 locknuts.		

Note: Shipping wt. is 1.8 kg for oil level controls and 0.46 kg for adaptors.

The OL-60ZH control is a possible option on select models. Use sightglass from compressor.

Some compressor models have a smaller diameter port than the arm diameter of the oil level control. This situation can mislead the control in the amount of oil that is actually in the compressor. It is advisable the selection and adjustment of the control be reviewed in this situation.

Design Benefits

- Virtually eliminates the need for oil changes due to suspended particulate in circulation
- Unsurpassed filtering efficiency 99% removal of 3 micron sized particles 98% removal of 2 micron sized particles
- Element utilizes a pleated design for maximum surface area
- Unsurpassed filtration capacities
- High flow capacities with low pressure drop
- Filter element utilizes an O-ring seal
- Inert microglass filter material ensures lubricant compatibility
- Dimensions allow for easy replacement of current filter

The Sporlan Catch-All or SF-283-F Suction Filter has been used for many years as an oil filter in refrigeration rack systems with mineral or alkylbenzene oil.

Specifications

With the use of the new polyolester (POE) oils, system chemistry changed. Unlike mineral and alkylbenzene oils, POE oil has sovent-like tendencies. POE oil has the ability to suspend and recirculate small, solid contaminants left from system installation or retrofit. Analysis of POE oil samples taken from actual systems have shown the oil to suspend and recirculate a high concentration of 2-20 micron sized particles, with the largest percentage between 2-10 microns. Although some particles are smaller than bearing tolerances, studies have shown bearing life can still be affected. Bearing wear depends upon the size, hardness, and concentration of particles in circulation. To effectively remove these small particles, Sporlan developed a new type of oil filter.

The **OF Series Oil Filters** are designed to be 99% efficient in removing 3 micron sized particles and yet have sufficient flow capacity at a low pressure drop. The unsurpassed filtration ability of the oil filters will assure clean POE, mineral or alkylbenzene oil is returned to the compressors. Clean oil ensures proper operation of the oil level control and minimizes compressor wear. The Sporlan OF Series Oil Filters were designed to virtually eliminate the need for oil changes resulting from suspended solid contaminants in circulation.

UNIT	DESCRIPTION	CONNECTIONS	FILTERING AREA cm ²	OVERALL LENGTH	SHELL DIAMETER mm	UL RATED WORKING PRESSURE – bar
0F-303-T	Oil Filter		2097	246	76	34.5
0F-303-BP-T	Oil Filter with Bypass Feature	3/8" SAE Flare		270		
ROF-413-T*	Replaceable Oil Filter	Field Support		206	89	27.5

*An OFE-1 Replaceable Filter Element must be purchased separately. The A-175-1 mounting bracket can be used for the ROF-413T Replaceable Oil Filter. Note: The OF Series Oil Filters are not suitable for use on ammonia systems

OFFER OF SALE

The items described in this document and other documents and descriptions provided by Parker Hannifin Corporation, its subsidiaries and its authorized distributors ("Seller") are hereby offered for sale at prices to be established by Seller. This offer and its acceptance by any customer ("Buyer") shall be governed by all of the following Terms and Conditions. Buyer's order for any item described in its document, when communicated to Seller verbally, or in writing, shall constitute acceptance of this offer. All goods or work described will be referred to as "Products".

 Terms and Conditions. Seller's willingness to offer Products, or accept an order for Products, to or from Buyer is expressly conditioned on Buyer's assent to these Terms and Conditions and to the terms and conditions found on-line at www.parker. com/saleterms/. Seller objects to any contrary or additional term or condition of Buyer's order or any other document issued by Buyer.

2. <u>Price Adjustments; Payments.</u> Prices stated on the reverse side or preceding pages of this document are valid for 30 days. After 30 days, Seller may change prices to reflect any increase in its costs resulting from state, federal or local legislation, price increases from its suppliers, or any change in the rate, charge, or classification of any carrier. The prices stated on the reverse or preceding pages of this document do not include any sales, use, or other taxes unless so stated specifically. Unless otherwise specified by Seller, all prices are F.O.B. Seller's facility, and payment is due 30 days from the date of invoice. After 30 days, Buyer shall pay interest on any unpaid invoices at the rate of 1.5% per month or the maximum allowable rate under applicable law.

3. **Delivery Dates; Title and Risk; Shipment.** All delivery dates are approximate and Seller shall not be responsible for any damages resulting from any delay. Regardless of the manner of shipment, title to any products and risk of loss or damage shall pass to Buyer upon tender to the carrier at Seller's facility (i.e., when it's on the truck, it's yours). Unless otherwise stated, Seller may exercise its judgment in choosing the carrier and means of delivery. No deferment of shipment at Buyers' request beyond the respective dates indicated will be made except on terms that will indemnify, defend and hold Seller harmless against all loss and additional expense. Buyer shall be responsible for any additional shipping charges incurred by Seller due to Buyer's changes in shipping, product specifications or in accordance with Section 13, herein.

4. <u>Warranty.</u> Seller warrants that the Products sold hereunder shall be free from defects in material or workmanship for a period of twelve months from the date of delivery to Buyer or 2,000 hours of normal use, whichever occurs first. This warranty is made only to Buyer and does not extend to anyone to whom Products are sold after purchased from Seller. The prices charged for Seller's products are based upon the exclusive limited warranty stated above, and upon the following disclaimer: <u>DISCLAIMER OF WARRANTY</u>: THIS WARRANTY COMPRISES THE SOLE AND ENTIRE WAR-RANTY PERTAINING TO PRODUCTS PRO-VIDED HEREUNDER. SELLER DISCLAIMS ALL OTHER WARRANTIES, EXPRESS AND IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

5. Claims; Commencement of Actions. Buyer shall promptly inspect all Products upon delivery. No claims for shortages will be allowed unless reported to the Seller within 10 days of delivery. No other claims against Seller will be allowed unless asserted in writing within 60 days after delivery or, in the case of an alleged breach of warranty, within 30 days after the date within the warranty period on which the defect is or should have been discovered by Buyer. Any action based upon breach of this agreement or upon any other claim arising out of this sale (other than an action by Seller for any amount due to Seller from Buyer) must be commenced within thirteen months from the date of tender of delivery by Seller or, for a cause of action based upon an alleged breach of warranty, within thirteen months from the date within the warranty period on which the defect is or should have been discovered by Buyer.

6. LIMITATION OF LIABILITY. UPON NOTIFICA-TION, SELLER WILL, AT ITS OPTION, REPAIR OR REPLACE A DEFECTIVE PRODUCT, OR REFUND THE PURCHASE PRICE. IN NO EVENT SHALL SELLER BE LIABLE TO BUYER FOR ANY SPE-CIAL, INDIRECT, INCIDENTAL OR CONSEQUEN-TIAL DAMAGES ARISING OUT OF, OR AS THE RESULT OF, THE SALE, DELIVERY, NON-DELIV-ERY, SERVICING, USE OR LOSS OF USE OF THE PRODUCTS OR ANY PART THEREOF, OR FOR ANY CHARGES OR EXPENSES OF ANY NATURE

INCURRED WITHOUT SELLER'S WRITTEN CONSENT, EVEN IF SELLER HAS BEEN NEG-LIGENT, WHETHER IN CONTRACT, TORT OR OTHER LEGAL THEORY. IN NO EVENT SHALL SELLER'S LIABILITY UNDER ANY CLAIM MADE BY BUYER EXCEED THE PURCHASE PRICE OF THE PRODUCTS.

7. <u>Contingencies.</u> Seller shall not be liable for any default or delay in performance if caused by circumstances beyond the reasonable control of Seller. 8. <u>User Responsibility</u>. The user, through its own analysis and testing, is solely responsible for making the final selection of the system and Product and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application and follow applicable industry standards and Product information. If Seller provides Product or system options, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the Products or systems.

9. Loss to Buyer's Property. Any designs, tools, patterns, materials, drawings, confidential information or equipment furnished by Buyer or any other items which become Buyer's property, may be considered obsolete and may be destroyed by Seller after two consecutive years have elapsed without Buyer placing an order for the items which are manufactured using such property. Seller shall not be responsible for any loss or damage to such property while it is in Seller's possession or control. 10. Special Tooling. A tooling charge may be imposed for any special tooling, including without limitation, dies, fixtures, molds and patterns, acquired to manufacture Products. Such special tooling shall be and remain Seller's property notwithstanding payment of any charges by Buyer. In no event will Buyer acquire any interest in apparatus belonging to Seller which is utilized in the manufacture of the Products, even if such apparatus has been specially converted or adapted for such manufacture and notwithstanding any charges paid by Buyer, Unless otherwise agreed, Seller shall have the right to alter, discard or otherwise dispose of any special tooling or other property in its sole discretion at any time.

11. **Buyer's Obligation: Rights of Seller.** To secure payment of all sums due or otherwise, Seller shall retain a security interest in the goods delivered and this agreement shall be deemed a Security Agreement under the Uniform Commercial Code. Buyer authorizes Seller as its attorney to execute and file on Buyer's behalf all documents Seller deems necessary to perfect its security interest. Seller shall have a security interest in, and lien upon, any property of Buyer in Seller's possession as security for the payment of any amounts owed to Seller by Buyer.

12. Improper use and Indemnity. Buyer shall indemnify, defend, and hold Seller harmless from any claim, liability, damages, lawsuits, and costs (including attorney fees), whether for personal injury, property damage, patent, trademark or copyright infringement or any other claim, brought by or incurred by Buyer, Buyer's employees, or any other person, arising out of: (a) improper selection, improper application or other misuse of Products purchased by Buyer from Seller; (b) any act or omission, negligent or otherwise, of Buyer; (c) Seller's use of patterns, plans, drawings, or specifications furnished by Buyer to manufacture Product; or (d) Buyer's failure to comply with these terms and conditions. Seller shall not indemnify Buyer under any circumstance except as otherwise provided.

13. Cancellations and Changes. Orders shall not be subject to cancellation or change by Buyer for any reason, except with Seller's written consent and upon terms that will indemnify, defend and hold Seller harmless against all direct, incidental and consequential loss or damage. Seller may change product features, specifications, designs and availability with notice to Buyer.

14. <u>Limitation on Assignment</u>. Buyer may not assign its rights or obligations under this agreement without the prior written consent of Seller. 15. <u>Entire Agreement</u>. This agreement contains

15. Entire Agreement. This agreement contains the entire agreement between the Buyer and Seller

and constitutes the final, complete and exclusive expression of the terms of the agreement. All prior or contemporaneous written or oral agreements or negotiations with respect to the subject matter are herein merged.

16. Waiver and Severability. Failure to enforce any provision of this agreement will not waive that provision nor will any such failure prejudice Seller's right to enforce that provision in the future. Invalidation of any provision of this agreement by legislation or other rule of law shall not invalidate any other provision herein. The remaining provisions of this agreement will remain in full force and effect. 17. Termination. This agreement may be terminated by Seller for any reason and at any time by giving Buyer thirty (30) days written notice of termination. In addition, Seller may by written notice immediately terminate this agreement for the following: (a) Buyer commits a breach of any provision of this agreement (b) the appointment of a trustee, receiver or custodian for all or any part of Buyer's property (c) the filing of a petition for relief in bankruptcy of the other Party on its own behalf, or by a third party (d) an assignment for the benefit of creditors, or (e) the dissolution or liquidation of the Buyer. 18. Governing Law. This agreement and the sale and delivery of all Products hereunder shall be deemed to have taken place in and shall be governed and construed in accordance with the laws of the State of Ohio, as applicable to contracts executed and wholly performed therein and without regard to conflicts of laws principles. Buyer irrevocably agrees and consents to the exclusive jurisdiction and venue of the courts of Cuyahoga County, Ohio with respect to any dispute, controversy or claim arising out of or relating to this agreement. Disputes between the parties shall not be settled by arbitration unless, after a dispute has arisen, both parties expressly agree in writing to arbitrate the dispute. 19. Indemnity for Infringement of Intellectual Property Rights. Seller shall have no liability for infringement of any patents, trademarks, copyrights, trade dress, trade secrets or similar rights except as provided in this Section. Seller will defend and indemnify Buyer against allegations of infringement of U.S. patents, U.S. trademarks, copyrights, trade dress and trade secrets ("Intellectual Property Rights"). Seller will defend at its expense and will pay the cost of any settlement or damages awarded in an action brought against Buyer based on an al-legation that a Product sold pursuant to this Agreement infringes the Intellectual Property Rights of a third party. Seller's obligation to defend and indemnify Buyer is contingent on Buyer notifying Seller within ten (10) days after Buyer becomes aware of such allegations of infringement, and Seller having sole control over the defense of any allegations or actions including all negotiations for settlement or compromise. If a Product is subject to a claim that it infringes the Intellectual Property Rights of a third party, Seller may, at its sole expense and option procure for Buyer the right to continue using the Product, replace or modify the Product so as to make it noninfringing, or offer to accept return of the Product and return the purchase price less a reasonable allowance for depreciation. Notwithstanding the foregoing, Seller shall have no liability for claims of infringement based on information provided by Buyer, or directed to Products delivered hereunder for which the designs are specified in whole or part by Buyer, or infringements resulting from the modification, combination or use in a system of any Product sold hereunder. The foregoing provisions of this Section shall constitute Seller's , sole and exclusive liability and Buyer's sole and exclusive remedy for infringement of Intellectual Property Rights.

20. <u>Taxes.</u> Unless otherwise indicated, all prices and charges are exclusive of excise, sales, use, property, occupational or like taxes which may be imposed by any taxing authority upon the manufacture, sale or delivery of Products.

21. **Equal Opportunity Clause.** For the performance of government contracts and where dollar value of the Products exceed \$10,000, the equal employment opportunity clauses in Executive Order 11246, VEVRAA, and 41 C.F.R. §§ 60-1.4(a), 60-741.5(a), and 60-250.4, are hereby incorporated.

© 2011 Parker Hannifin Corporation

Parker Hannifin Ltd **Cimate and Industrial Controls Group Refrigeration and Air Conditioning Europe** Cortonwood Drive Brampton South Yorkshire S73 OUF United Kingdom phone +44 (0) 1226 273400 fax +44 (0) 1226 273401 www.parker.com 32011